

The association between *MTHFR* polymorphism, dietary methyl donors, and childhood asthma and atopy

Yean Jung Choi,¹ So-Yeon Lee,² Sung-Ok Kwon,³ Mi-Jin Kang,² Ju-Hee Seo,⁴ Jisun Yoon,⁵ Hyun-Ju Cho,⁶ Sungsu Jung,⁷ Soo-Jong Hong²

Abstract

Background: Studies investigating the genetic association of the C677T methylenetetrahydrofolate reductase (*MTHFR*) genotype and dietary methyl donors with asthma and atopy are limited, and have variable results.

Objective: To investigate the effect of dietary methyl donor intake on the risk of childhood asthma and atopy, based on the C677T polymorphism in the *MTHFR* gene.

Methods: This cross-sectional study included 2,333 elementary school children aged 6–8 years across Korea during 2005 and 2006, as part of the first Children's Health and Environmental Research survey. Genotyping for the *MTHFR* (rs1801133) polymorphism was performed using the TaqMan assay. Multivariable-adjusted logistic regression analysis was performed to determine a descriptive association between the dietary methyl donor intake, *MTHFR* polymorphism, and childhood asthma and atopy.

Results: Intake of dietary methyl donors like folates was significantly associated with a decreased risk of the wheezing symptom, in the past 12 months, and "ever asthma" diagnosis, respectively. Vitamin B_6 intake was also associated with a decreased atopy risk. The T allele of the *MTHFR* (rs1801133) gene was significantly associated with a decreased risk of atopy. Increased intakes of folate, vitamin B_2 , and vitamin B_6 were protective factors against atopy, especially in children with the T allele on the *MTHFR* gene, compared to those with lower intakes and the CC genotype.

Conclusion: High intakes of dietary methyl donors were associated with reduced risk of atopy and asthma symptoms. These may have additive effects related to the susceptibility alleles of the *MTHFR* gene. The clinical implications require evaluation.

Key words: Asthma, Atopy, Folate, Methyl donors, MTHFR, Polymorphism

Citation:

Choi, Y. J., Lee, S. Y., Kwon, S. O., Kang, M. J., Seo, J. H., Yoon, J., Cho, H. J., Jung, S., Hong, S. J. The association between *MTHFR* polymorphism, dietary methyl donors, and childhood asthma and atopy. *Asian Pac J Allergy Immunol*. https://doi.org/10.12932/ ap-300422-1375

Affiliations:

- ¹ Department of Food and Nutrition, Sahmyook University, Seoul, Korea
- ² Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- ³ Biomedical Research Institute, Kangwon National University, Chuncheon, Korea

- ⁴ Department of Pediatrics, Dankook University College of Medicine, Cheonan, Korea
- ⁵ Department of Pediatrics, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Seoul, Korea
- ⁶ Department of Pediatrics, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
- ⁷ Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea

Corresponding author:

Soo-Jong Hong

Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505, Korea E-mail: sjhong@amc.seoul.kr

Introduction

Worldwide trends in asthma prevalence has shown an increase followed by a stable, high prevalence,¹⁻³ which might be partially explained by the hygiene hypothesis, air pollution, and nutrients.^{4,5} Dietary changes can affect pathophysiology of asthma through epigenetic mechanisms (which may lead to heritable or postnatal changes in gene expressions without alterations in the DNA sequence), such as DNA methylation.⁶ Folate is required for many biological processes, including biosynthesis of purines and pyrimidines, and production of amino acids. Folate is also needed for the methylation of deoxyuridylate to thymidylate during DNA synthesis, which is necessary for normal cell division. Dietary methyl donors, including folate in the form of 5-methyl-tetrahydrofolate, are required for the one-carbon metabolic pathway to produce S-adenosylmethionine, the universal methyl donor essential for the DNA methylation process, which is a key player in epigenetic control of gene expression. Thus, differential intake of these nutrients can lead to differences in DNA methylation, ultimately altering gene expression.7,8

In humans, dietary nutrients such as folate, vitamin B₂, and vitamin B₆ are sources of methyl donors for DNA methylation. It is yet to be verified whether these B group vitamins are risk factors or preventive factors for asthma and atopy.7 A cross-sectional study of Australian adults showed that the dietary intake of folate was positively associated with having physician-diagnosed asthma, but not with current asthma, airway responsiveness, or atopy.9 In another cross-sectional study, the serum folate level was inversely associated with wheeze or atopy but not with physician-diagnosed asthma in children and adults in the United States.¹⁰ Similarly, a 10 ng/mL decrease in serum folate was found to be associated with 45% higher odds of asthma in Peruvian children.¹¹ In contrast, a recent cross-sectional study reported that high serum folate metabolites were associated with current asthma in adults, and positively associated with lung function in children and adults.¹² Therefore, the research findings on effects of folate on asthma remain controversial.

Studies investigating the association of genetic variants of genes in the methyl donor metabolic pathway with asthma and atopy have been limited to date.13-15 The vast majority of studies investigating the roles of genetic associations have been performed on genetic variants in the methylenetetrahydrofolate reductase (MTHFR) gene because of the association of its common variant, C677T, with the reduced enzymatic activity.13 MTHFR C677T polymorphism (C→T substitution at nucleotide 677) causes the defective enzyme to alter the methionine metabolism, and greatly increases the levels of homocysteine (Hcy) in blood and urine, which can cause various complications. Individuals who carry two copies of this variant, homozygous (TT), tend to have higher Hcy levels and lower serum folate levels compared to controls.13 The results of studies investigating the genetic association of the C677T MTHFR genotype with asthma and atopy have been variable. A large birth cohort study of British children and their mothers found no significant association between the C677T mutation and atopy or asthma.14 In contrast, among 6,784 Danish adults,

low serum folate levels and the TT genotype of the *MTHFR* C677T polymorphism were significantly associated with an increased risk of doctor-diagnosed asthma and attacks of shortness of breath.¹⁵ However, no study has verified asthma, and atopy by implementing objective indicators such as bronchial hyper-responsiveness (BHR) measurements, and skin prick tests (SPTs) for children in the general population.

In this cross-sectional study, we investigated the relationship between dietary methyl donor intake and the risks of atopy, bronchial hyperresponsiveness, and asthma related to *MTHFR* polymorphism in school-aged children.

Methods

Study population

The study population consisted of primary school-going children aged 6–8 years across Korea, between 2005 and 2006, as part of the first Children's Health and Environmental Research study of the nationwide general population.¹⁶ Of the 2,899 recruited children, 195 with missing data on all the three, age, sex, and diagnosis questionnaires, and 371 with missing data on the food frequency questionnaire (FFQ) were excluded, along with those whose total energy intake was < 500 or > 5,000 kcal per day. Thus, the final study population included 2,333 children (mean \pm SD age 7.56 \pm 1.00 years), and a total of 930 individuals underwent genotyping for *MTHFR* polymorphism (**Figure 1**).

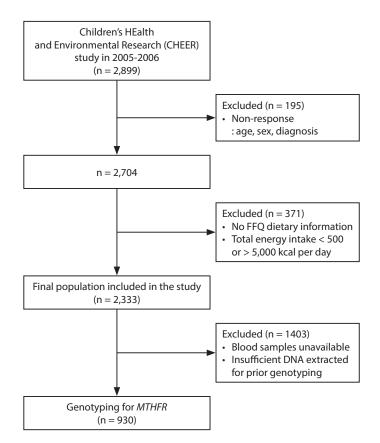


Figure 1. Flow chart of study participants.

Phenotype definitions

Four dichotomous phenotypes were defined a priori for the analysis: (1) asthma, defined as doctor-diagnosed asthma and a positive response to the question "Has your child ever been diagnosed with asthma by a physician?" in the survey. Because the asthma diagnosis used in this study was ever-diagnosed asthma, it included all those diagnosed with asthma in the past, and current asthma referred to asthma symptoms, in the past 12 months; (2) atopy, defined as any SPT wheal that was at least 3 mm greater than the negative control for any allergen test; (3) atopic asthma, defined as diagnoses of both asthma and atopy; and (4) BHR, assessed using the methacholine-challenge test, where a positive response was defined as provocative concentration (PC₂₀) causing a 20% decrease in forced expiratory volume in 1 s (FEV₁), and BHR was defined as a PC₂₀ \leq 8 mg/mL.

Questionnaire-based survey

The International Studies of Asthma Allergic diseases in Childhood (ISAAC) questionnaire has been validated in Korean children and was used to evaluate the presence of allergic diseases (including asthma) and risk factors for allergic diseases in each survey.¹⁶ A participant was deemed to have had asthma at enrollment if there was an affirmative response to the question in the ISAAC questionnaire, "Has your child ever been diagnosed with asthma by a physician?". The presence of asthma symptoms in the last 12 months was assessed through the question, "Has your child ever had symptoms of asthma such as wheezing or whistling in the chest during the last 12 months?"

Dietary assessment

We assessed dietary intake through a validated semi-quantitative food frequency questionnaire (FFQ) commonly used in other studies.¹⁶ The questionnaire has previously been validated and includes 113 food items with 9 non-overlapping intake frequencies over the preceding year (ranging from "rarely eaten" to "eaten more than three times per day") and 3 portion sizes (small, average, or large). Using the Computer-Aided Nutritional Analysis Program III (CAN PRO III) developed by the Korean Nutrition Society, the amount of each food item included in the FFQ was converted into grams, from which the daily nutrient intake was calculated. The dietary intakes of micronutrients (B group vitamins and folic acid) were analyzed.

Skin prick tests (SPTs)

SPTs were performed for the 14 most common inhalant allergens (*Dermatophagoides pteronyssinus*, *Dermatophagoides farina*, dog dander, cat epithelium, cockroaches, *Alternaria alternate*, *Aspergillus fumigatus*, grass pollen mixture, tree mixture I, tree mixture II, ragweed, mugwort, alder, and oak), and 4 food allergens (peanuts, egg whites, cow's milk, Methyl donor intake on asthma and atopy

and soybeans). Indoor allergens included *D. pteronyssinus*, *D. farina*, cockroaches, dog dander, and cat epithelium. Outdoor allergens included grass mixture, tree mixture I, tree mixture II, ragweed, mugwort, alder, oak, *A. alternate*, and *A. fumigatus*. Histamine (10 mg/mL) was used as the positive control, and normal saline was used as the negative control. A mean wheal size of \geq 3 mm when measured after 15 min and wheals caused by histamine were considered positive. Atopy was defined as at least one positive test result to any of the 18 allergens on the SPT.

Bronchial hyper-responsiveness (BHR)

Spirometry was performed according to the American Thoracic Society/European Respiratory Society guidelines using a portable microspirometer (Microspiro HI-298, Chest Corporation, Tokyo, Japan). The FEV₁, forced vital capacity (FVC), and forced expiratory flow at 25%–75% of the FVC (FEF_{25-75%}) were measured. The methacholine bronchial challenge test was performed to assess BHR; for this, the tidal inhalation of doubling doses of methacholine ranging from 0.625 to 25 mg/mL (0.625, 1.25, 2.5, 5, 10, and 25 mg/mL) were used. The cumulative methacholine dose that caused PC₂₀ was calculated, according to American Thoracic Society recommendations. Details of the BHR measurements are provided elsewhere.¹⁶ Participants were considered to have BHR to methacholine when their methacholine PC₂₀ was ≤ 8 mg/mL.

MTHFR polymorphism

Genomic DNA was extracted from peripheral venous blood samples using the Gentra Puregene^{*} Blood kit (Qiagen, Germantown, MD, USA). The genotyping of *MTHFR* polymorphism (rs1801133) was screened using the TaqMan fluorogenic 5' nuclease assay (ABI, Foster City, CA, USA). The final volume of the PCR was 5 μ L, which contained 10 ng of genomic DNA and 2.5 μ L of the TaqMan Universal polymerase chain reaction master mix, along with 0.13 μ L of the assay mix (Assay ID C_1202883_20). The endpoint fluorescent readings were performed on an ABI PRISM 7900 HT Sequence Detection System (ABI). Duplicate samples and negative controls were included to ensure accuracy of the genotyping.

Statistical analysis

The nutrients were adjusted considering the total energy intake using the residual method.¹⁷ The adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were obtained using logistic regression analysis according to the tertile of the dietary factors under investigation, with two low tertiles as references. We compared the higher intake group with two lower tertiles, but not the lowest group, as a reference to determine a descriptive association between the dietary methyl donor uptake, *MTHFR* polymorphism, childhood asthma, and atopy. The most common *MTHFR* genotype (CC) was used as a reference genotype (wild type). Because of their low prevalence, the variant genotypes CT and TT were combined and considered as a "variant" genotype. We also calculated the correlation coefficients between the unadjusted

intakes of methyl donors and other nutrients, including vitamin C, vitamin E, and n-3/n-6 fatty acids (**Table S1**). To determine Pearson correlation coefficients, the logarithms of the dietary variables were taken rather than their original values. Statistical analysis was performed using SAS for Windows (version 9.2; SAS Institute, Cary, NC, USA). A multiple logistic regression analysis was performed by adjusting for key covariates such as age, sex, body mass index, parental history of allergic disease, maternal education, log-transformed total energy intake, and monthly household income. A *P*-value of < 0.05 was considered statistically significant.

Results

Participants' characteristics

The characteristics of the study population are listed in **Table 1**. There was a parental history of allergic diseases in 31.85% of the participants. The prevalence of children with an ever asthma diagnosis was 10.98%, with a value of 12.16% for children that had experienced the wheezing symptom in the past 12 months (**Table 1**). The prevalence values for BHR and atopy in children were 14.90% and 27.87%, respectively.

The daily intake of methyl donors (folate, Vitamin B_2 and B_6) are listed in **Table 1**. The average intake of total calories was within the dietary reference intake (DRI) range for Koreans, the average folate intake was below the DRI value, while the dietary intakes of vitamin B_2 and vitamin B_6 were slightly above the DRI values.

	$N^{a} = 2333$	%	Non-atopy	%	Atopy	%	Meeting % KDRI
Age (y),	7.56 ± 1.00		7.73 ± 1.25		7.78 ± 1.30		
Sex (male)	1199/2333	51.4	430/906	47.8	201/350	57.4	
BMI (kg/m ²)	16.79 ± 2.48		16.74 ± 2.54		16.96 ± 2.60		
Parental history of allergic diseases	730/2292	31.9	264/885	29.8	122/346	35.3	
Maternal education							
Low (≤ high school)	1315/2237	58.8	512/854	60.0	192/331	58.0	
High	922/2237	41.2	342/854	40.0	139/331	42.0	
Household income (10,000 won)							
≤ 199	687/2297	29.9	296/893	33.2	99/341	29.0	
200–299	797/2297	34.7	290/893	32.5	117/341	34.3	
≥ 300	813/2297	35.4	307/893	34.4	125/341	36.7	
Passive smoking (yes)	1025/2277	45.0	408/882	46.3	151/334	45.2	
Measurements							
$PC_{20} \le 8 \text{ mg/dL}$	181/1215	14.9	105/880	11.9	76/334	22.8	
Atopy	350/1256	27.9			350/350	100.0	
Prevalence							
Wheezing symptom in the past 12 months	282/2320	12.2	91/900	10.1			
Asthma diagnosis, ever	254/2314	11.0	66/897	7.4			
Atopic wheezing symptom in the past 12 months	66/1250	5.3			66/350	18.9	
Atopic asthma diagnosis, ever	54/1246	4.3			54/349	15.5	

Table 1. General characteristics of the participants.

	N ^a = 2333	%	Non-atopy	%	Atopy	%	Meeting % KDRI
MTHFR (rs1801133)							
CC	297/930	31.9	99/364	27.2	51/126	40.5	
СТ	469/930	50.4	199/364	54.7	52/126	41.3	
ТТ	164/930	17.6	66/364	18.1	23/126	18.3	
Hardy-Weinberg Equilibrium P-value	0.3657		0.0506		0.1392		
Nutrients							
Total energy intake (kcal/day) ^b	1688.24 ± 717.39						1500-1700
Folate (µg DFE/day) ^c	185.88 ± 65.78		184.67 ± 66.30		185.95 ± 69.35		220
Vitamin B_2 (mg/day)	1.20 ± 0.35		1.19 ± 0.37		1.20 ± 0.36		0.8-0.9
Vitamin B ₆ (mg/day)	1.31 ± 0.33		1.31 ± 0.34		1.29 ± 0.33		0.9

Table 1. (Continued)

BMI, body mass index; *MTHFR*; methylenetetrahydrofolate reductase; DFE, dietary folic acid equivalent; KDRI, Korean Dietary Reference Intake; ^aMean ± SD or N (%)

^bEnergy (kcal/day) for 6-8-year-old male/female

^cFolate (µg DFE/day) for 6–8-year-old male/female

Relationships between dietary methyl donor intakes and risks of asthma and atopy

A high dietary folate intake was a protective factor against the wheezing symptom in the past 12 months (aOR, 0.74; 95%CI, 0.55–1.00) and ever asthma diagnosis (aOR, 0.73; 95%CI, 0.53–0.99) (**Table 2**). A high intake of vitamin B_6 was associated with a reduced risk of atopy (aOR, 0.74; 95%CI, 0.56–0.99).

The amount of high, medium, and low intake of folate were 119.76 ± 24.01 , 179.85 ± 15.88 , and 257.95 ± 50.50 , respectively (**Table S2**). In an analysis that did not combine the lower two tertiles, when the higher intake was compared with the two other tertiles, a high folate intake still showed a protective effect against the wheezing symptom in the past 12 months and asthma diagnosis, although it was not significant (**Table S3**).

Relationships between MTHFR polymorphism and risks of asthma and atopy

The CT + TT genotypes of the *MTHFR* C677T polymorphism were associated with a low prevalence of atopy compared to the CC genotype (aOR, 0.57; 95%CI, 0.36–0.89) (**Table 2**). However, the *MTHFR* C677T genotype was not significantly associated with asthma symptoms, ever asthma diagnosis, or BHR.

Effects of dietary methyl donor intakes on asthma and atopy risks according to MTHFR polymorphism

Children with the T allele who had high intakes of folate, vitamin B_2 , and vitamin B_6 were less likely to have atopy than children with the CC genotype who had low intakes of folate, vitamin B_2 , and vitamin B_6 (aOR, 0.48; 95%CI, 0.25–0.93, aOR, 0.50; 95%CI, 0.26–0.95, and aOR, 0.40; 95%CI, 0.21–0.76, respectively) (**Table 3**). However, no such associations were found between asthma symptoms, ever asthma diagnosis, and BHR.

Effects of dietary methyl donor intakes on risks of atopic asthma and atopic BHR according to MTHFR polymorphism

High intakes of folate, vitamin B_2 , and vitamin B_6 were also protective factors against the atopic wheezing symptom in the past 12 months (aOR, 0.17; 95%CI, 0.04–0.80, aOR, 0.26; 95%CI, 0.07–1.01, and aOR, 0.26; 95%CI, 0.07–0.99, respectively), especially for the CT or TT genotype at nucleotide 677T *MTHFR* compared to those with low intakes and CC at this position (**Table S4**). However, these effects were not found for the ever asthma diagnosis with atopy and atopic BHR.

	in t	Wheezing symptom in the past 12 months	otom onths	Asth	Asthma diagnosis, ever	s, ever	<u> </u>	BHR (PC ₂₀ ≤ 8 mg/dL)	II)		Atopy	
	z	aOR	95%CI	z	aOR	95%CI	z	aOR	95%CI	z	aOR	95%CI
Folate												
Low	185/1213	1.00		170/1226	1.00		112/626	1.00		209/552	1.00	
High	68/633	0.74	(0.55 - 1.00)	63/637	0.73	(0.53 - 0.99)	54/298	1.02	(0.72 - 1.46)	102/267	1.01	(0.76 - 1.34)
Р		0.0479*			0.0414^{*}			0.9104			0.9321	
Vitamin B ₂												
Low	162/1229	1.00		149/1239	1.00		108/618	1.00		201/551	1.00	
High	91/617	1.11	(0.84 - 1.46)	84/624	1.08	(0.81 - 1.45)	58/306	1.09	(0.76-1.55)	110/268	1.05	(0.79 - 1.39)
Ρ		0.4858			0.5870			0.6432			0.7280	
Vitamin B ₆												
Low	173/1218	1.00		157/1231	1.00		119/614	1.00		224/534	1.00	
High	80/628	0.93	(0.70 - 1.23)	76/632	0.96	(0.72-1.29)	47/310	0.79	(0.54 - 1.14)	87/285	0.74	(0.56 - 0.99)
Р		0.6037			0.7860			0.1985			0.0441^{*}	
MTHFR variant												
CC	34/246	1.00		27/252	1.00		22/118	1.00		47/95	1.00	
CT+TT	81/516	1.19	(0.77 - 1.84)	75/521	1.42	(0.89–2.28)	44/266	06.0	(0.51 - 1.58)	71/251	0.57	(0.36 - 0.89)
Р		0.4417			0.1445			0.7124			0.0127*	

Table 2. aOR and 95%CIs for asthma and atopy according to intake of dietary methyl donors and MTHFR polymorphism.

Adjusted for age, sex, BMI (continuous), рателная הואיט אי אישייים אין אישיים אין (continuous), parentat P < 0.05. *Significantly different at P < 0.05. aOR: adjusted odds ratio, BHR: bronchial hyperresponsive, BMI: body mass index, CI: confidence interval, *MTHFR*: methylenetetrahydrofolate reductase.

py.
[o]
d a
ane
a
I
stl
fa
0 S
the risks
e risł
he
n t
õ
nors
n
p
уſ
methy
Ë
dietar
die
ъf с
s
ke
ıta
Ē
pu
l a
SIL
, hi
lin
ĕ
ly.
bo
1 THFR
HF
ſΤΗ
N
een
We
et
d L
0
Ict
era
nto
ti
en
E
Į.
vii
en
e-
en
fg
0
cts
ffe
Ë
3.
able
Ta
• ·

		, ii	Wheezing symptom in the past 12 months	otom onths	Asth	Asthma diagnosis, ever	s, ever		BHR $(PC_{2_0} \le 8 mg/dI)$	(II)		Atopy	
		z	aOR	(95%CI)	z	aOR	(95%CI)	Z	aOR	(95%CI)	z	aOR	(95%CI)
Folate	MTHFR												
Low	CC	26/162		1	21/166		1	17/83		1	31/70		1
High	CC	8/84	0.58	(0.25 - 1.36)	6/86	0.50	(0.19 - 1.31)	5/35	0.68	(0.23-2.02)	16/25	1.47	(0.68 - 3.18)
Low	CT + TT	61/332	1.18	(0.71-1.97)	55/337	1.31	(0.76–2.27)	29/177	0.81	(0.42 - 1.59)	52/161	0.73	(0.43 - 1.24)
High	CT + TT	20/184	0.72	(0.38 - 1.35)	20/184	06.0	(0.47 - 1.74)	15/89	0.81	(0.38 - 1.75)	19/90	0.48	(0.25 - 0.93)
P for trend			0.7736	_		0.6438			0.6127		-	0.0136^{*}	
P for interaction			0.9335			0.5856			0.5660			0.1090	
Vitamin B ₂	MTHFR												
Low	CC	23/166		1	19/169		1	17/78		1	31/64		1
High	CC	11/80	1.01	(0.46-2.22)	8/83	0.86	(0.36 - 2.08)	5/40	0.57	(0.19 - 1.69)	16/31	1.14	(0.53-2.47)
Low	CT+TT	48/329	1.10	(0.64 - 1.90)	44/332	1.25	(0.70 - 2.23)	29/170	0.78	(0.40 - 1.52)	48/159	0.65	(0.38 - 1.13)
High	CT+TT	33/187	1.35	(0.75–2.43)	31/189	1.55	(0.83 - 2.88)	15/96	0.74	(0.34 - 1.61)	23/92	0.50	(0.26 - 0.95)
P for trend			0.3171			0.1206			0.5253			0.0138*	
P for interaction			0.6845			0.4862			0.4237			0.4156	
Vitamin B ₆	MTHFR												
Low	CC	27/163		1	19/170		1	19/80		1	34/65		1
High	CC	7/83	0.49	(0.20 - 1.19)	8/82	0.86	(0.36 - 2.07)	3/38	0.30	(0.08 - 1.08)	13/30	0.88	(0.40 - 1.93)
Low	CT+TT	52/328	0.98	(0.59 - 1.64)	53/326	1.52	(0.87–2.68)	30/171	0.73	(0.38 - 1.39)	52/158	0.64	(0.37 - 1.08)
High	CT+TT	29/188	0.97	(0.55 - 1.73)	22/195	1.08	(0.56-2.07)	14/95	0.60	(0.28 - 1.28)	19/93	0.40	(0.21 - 0.76)
P for trend			0.7774			0.4572			0.3104			0.0042*	
P for interaction			0.1753			0.7092			0.1734			0.4934	
Adiusted for see see RMI (continuous) nevented history of activities thinities derivative anticommental tobocco emoles (ETC) material aducation household income for transformed anarycintale													

Discussion

We investigated the relationships between dietary methyl donor intakes and childhood asthma and atopy related to the *MTHFR* C677T polymorphism in Korean school-aged children in nationwide general population. This study had three major findings: 1) high dietary methyl donor intakes were associated with reduced risks of asthma symptoms and ever asthma diagnosis; 2) the *MTHFR* C677T polymorphism was associated with a decreased risk of atopy, and 3) a combination of the genetic polymorphism *MTHFR* and intakes of high methyl donors, including folate and vitamin B_6 , was associated with atopy and atopic asthma. Therefore, we suggest that high folate and vitamin B_6 intakes and *MTHFR* genetic susceptibility may have an additive effect on pre-existing atopic asthma in school-aged children.

considered MTHFR is key а enzyme in one-carbon metabolism because it irreversibly converts 5,10-methylenetetrahydrofolate, which serves as the methyl donor of methionine, a precursor of S-adenosylmethionine (SAM), to 5-methyltetrahydrofolate. Mutation of the MTHFR gene which causes the C677T polymorphism is located at exon 4 which results in the conversion of valine to alanine at codon 222, a common polymorphism that reduces the activity of this enzyme. This A222V conversion affects the N-terminal catalytic region of the 656-amino acid MTHFR protein.¹⁸ In individuals with the homozygous TT genotype, the inability to convert Hcy to methionine is known to result from the decreased MTHFR enzymatic activity, and results in increased plasma Hcy levels. The association between atopy and the MTHFR C677T polymorphism was established in a study evaluating factors affecting atopy and folate metabolism in adults.¹⁹ They found that inhibition of the re-methylation cycle due to decreased folic acid and changes in TH1/TH2 equilibrium due to low antioxidant capacity may be associated with atopy development.7,8,20

The role of the MTHFR genotypes can be changed by various biological exposures, including allergens, endotoxins, and different dietary conditions, which are significantly associated with the development of allergic sensitization and recurrent wheezing.21 Although there is no significant association between the MTHFR polymorphisms, and atopy or asthma when the genotype is not classified,14 some studies have shown that the TT genotype of the MTHFR C677T polymorphism is associated with an increased risk of physician-diagnosed asthma and atopy.^{15,21} The MTHFR C677T genotype is also associated with folic acid concentration because the CC genotype is associated with higher plasma folate concentrations than those for the CT and TT genotypes, which yield lower plasma folate and higher total Hcy levels.^{22,23} Of note, the plasma folate level is more affected by the folate intake in the TT genotype than in the CC or CT genotype.24 When participants with the TT genotype use folate or vitamin B supplementation, they demonstrate increased folate concentrations and decreased Hcy levels, suggesting that genetic polymorphisms of folate-metabolizing enzymes can be important modulators of Hcy levels, specifically in individuals with the TT genotype.^{23,25-27} Thus, for individuals with the TT genotype,

folate intervention based on personalized nutrition could be effective. Although the underlying mechanisms remain unknown, the results of the present study suggest that the CT or TT genotypes of the *MTHFR* C677T polymorphism, particularly when exposed to high methyl donors, may be associated with a reduced risk of atopic asthma in school-aged children. Further large-scale studies are needed to confirm these results.

Folate is involved in DNA methylation through the formation of SAM and Hcy metabolism, thereby influencing the pathogenesis of asthma.²⁸ Folate is naturally present in a wide variety of foods, including dark green leafy vegetables, legumes, and some fruits such as oranges.²⁹ Folate deficiency can lead to significant health problems, including increased susceptibility to infection and several disorders characterized by the enhanced activation of the cellular immune system, such as Alzheimer's disease, rheumatoid arthritis, cardiovascular disease, malignancies, birth defects, and pregnancy complications.²⁶ Furthermore, impaired folate metabolism may be related to the development of atopy.^{15,21} Maternal folate supplementation, and specifically its timing, during pregnancy is an important determinant of childhood asthma.^{30,31} Reportedly, low serum folate levels partially influence asthma in children,^{10,11} and high serum folate metabolites have been positively associated with lung function in children.¹² However, there is insufficient evidence to support the association between dietary folate intake and childhood allergic disease.

The rationality of the conclusions from these previous studies would be greater if the sample sizes of the individual studies were larger. In addition, the MTHFR C677T polymorphism likely affects the role of MTHFR in the metabolism of Hcy as discussed in previous section. Furthermore, the diversity of the disease expression in different ethnic groups or populations has indicated the importance of considering the MTHFR C677T gene polymorphism for explanation of geographic factors in disease-association analysis. Further investigation is therefore needed to determine the cause of the conflicting results. In our study, high dietary folate intake was associated with a decreased risk of asthma symptoms and atopy in school-aged children. In addition, the intake of high folate and vitamin B_c with the MTHFR polymorphism was a protective factor against atopic asthma. In line with the findings of previous studies, our results support the previous hypothesis suggesting an association between low dietary folate intake and the development of asthma and atopy.

To date, there have been few studies investigating the association between genetic variants in genes of the methyl donor metabolic pathway with asthma and atopy. There are possible explanations for the mechanism of the association between the intake of methyl donors and allergic diseases. A recent subcohort study showed that phosphatidylcholine intake was associated with asthma-related health outcomes, including lung inflammation and pulmonary function in children, as measured by FEV₁.³² Specifically, the target gene interferon-gamma may provide more evidence

for the mechanistic pathway that links dietary intake and asthma-related health. $^{\rm 32,33}$

A strength of this study was its large sample size, recruited from the general, nationwide population. In particular, it is deemed to be of considerable significance because no other study has measured BHR or SPTs in children from a general, nationwide population; instead they have been mostly comprised of case-control studies. Therefore, the results of this study are considered to be more generalizable. Another strength includes the use of the validated ISAAC questionnaire with a relatively high response rate (95%) and low proportion of missing values. We further identified associations between dietary methyl donors and the risks of asthma and atopy, with MTHFR polymorphism possibly providing an additive effect. A better understanding of such subgroup analyses, which are stratified by dietary factor and genotype, will allow for more targeted assessments of the combined effect of the gene-environment interaction between nutrient status and single-nucleotide polymorphisms, which has been associated with childhood asthma and atopy.

This study had certain limitations. The cross-sectional study design did not permit us to establish a causal relationship between the questionnaire-based dietary methyl donor intake assessment and development of atopy and asthma. Moreover, to propose descriptive associations between the dietary methyl donor intakes, MTHFR polymorphism, and childhood asthma and atopy, we compared the higher intake group with two lower tertiles, rather than the lowest group, as a reference. Because no convincing statistical evidence for gene and environment interaction has been observed, well-designed prospective studies with additional information on other environmental factors that may be concomitantly associated with RBC folate, serum B group vitamins, plasma Hcy, and the methylated DNA level are needed to confirm the current findings.

Based on the *MTHFR* polymorphism in school-aged children, these findings provide a plausible explanation for the relationship between methyl donor intake and the development of atopy and asthma. We confirmed previously observed associations between the nutrient status and single-nucleotide polymorphisms in the genes involved in the uptake or metabolism of these nutrients and atopy, as well as atopic asthma. In addition, we found that a high intake of methyl donors was negatively associated with atopy and existing atopic asthma, with possible additive effects by *MTHFR* polymorphisms in school-aged children. The clinical implications of these findings require further evaluation.

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (NRF-2020R1 A2C2012822).

Author contributions

- SJH designed the research.
- YJC, SOK, and MJK analyzed the data.
- YJC and SYL wrote the paper.
- SYL, JHS, JY, HJC, SJ, and SJH conceptualized the original study and provided an essential database.
- SJH had the primary responsibility for the final content.
- All the authors have read and approved the final manuscript.

References

- 1. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355:2226–35.
- Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43.
- Lee E, Kim A, Ye YM, Choi SE, Park HS. Increasing prevalence and mortality of asthma with age in Korea, 2002–2015: A nationwide, population-based study. Allergy Asthma Immunol Res. 2020;12:467–84.
- Seaton A, Godden DJ, Brown K. Increase in asthma: A more toxic environment or a more susceptible population? Thorax. 1994;49:171–4.
- Jung DY, Leem JH, Kim HC, Kim JH, Hwang SS, Lee JY, et al. Effect of traffic-related air pollution on allergic disease: Results of the children's health and environmental research. Allergy Asthma Immunol Res. 2015; 7:359–66.
- Miller RL, Ho SM. Environmental epigenetics and asthma: Current concepts and call for studies. Am J Respir Crit Care Med. 2008;177: 567–73.
- Sharma S, Litonjua A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol. 2014;133:1246–54.
- Lin JH, Matsui W, Aloe C, Peng RD, Diette GB, Breysse PN, Matsui EC. Relationships between folate and inflammatory features of asthma. J Allergy Clin Immunol. 2013;131:918–20.
- Woods RK, Walters EH, Raven JM, Wolfe R, Ireland PD, Thien FC, Abramson MJ. Food and nutrient intakes and asthma risk in young adults. Am J Clin Nutr. 2003;78:414–21.
- Matsui EC, Matsui W. Higher serum folate levels are associated with a lower risk of atopy and wheeze. J Allergy Clin Immunol. 2009;123: 1253–9.e2.
- Han YY, Forno E, Rosser F, Celedón JC. Serum folate metabolites, asthma, and lung function in a nationwide U.S. study. J Allergy Clin Immunol. 2020;146:220–222.e8.
- Nicholson A, Pollard SL, Lima JJ, Romero KM, Tarazona-Meza C, Malpartida-Guzmán G, et al. Serum folate concentrations, asthma, atopy, and asthma control in Peruvian children. Respir Med. 2017;133:29–35.
- Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.
- 14. Granell R, Heron J, Lewis S, Davey Smith G, Sterne JA, Henderson J. The association between mother and child *MTHFR* C677T polymorphisms, dietary folate intake and childhood atopy in a population-based, longitudinal birth cohort. Clin Exp Allergy. 2008;38: 320–8.
- Thuesen BH, Husemoen LL, Ovesen L, Jørgensen T, Fenger M, Gilderson G, Linneberg A. Atopy, asthma, and lung function in relation to folate and vitamin B(12) in adults. Allergy. 2010;65:1446–54.
- Lee SY, Kim BS, Kwon SO, Oh SY, Shin HL, Jung YH, et al. Modification of additive effect between vitamins and ETS on childhood asthma risk according to GSTP1 polymorphism: A cross-sectional study. BMC Pulm Med. 2015;15:125.
- Rhee JJ, Cho E, Willett WC. Energy-adjustment of nutrient intakes is preferable to adjustment using body weight and physical activity in epidemiologic analyses. Public Health Nutr. 2014;17:1054–60.
- Dogru M, Aydin H, Aktas A, Cırık AA. Methylenetetrahydrofolate reductase gene polymorphism in children with allergic rhinitis. Allergol Immunopathol (Madr). 2015;43:579–83.

- Husemoen LL, Toft U, Fenger M, Jørgensen T, Johansen N, Linneberg A. The association between atopy and factors influencing folate metabolism: Is low folate status causally related to the development of atopy? Int J Epidemiol. 2006;35:954–61.
- Bae DJ, Jun JA, Chang HS, Park JS, Park CS. Epigenetic changes in asthma: Role of DNA CpG methylation. Tuberc Respir Dis (Seoul). 2020; 83:1–13.
- Gern JE, Calatroni A, Jaffee KF, Lynn H, Dresen A, Cruikshank WW, et al. Patterns of immune development in urban preschoolers with recurrent wheeze and/or atopy. J Allergy Clin Immunol. 2017;140: 836–844.e7.
- 22. Crider KS, Zhu JH, Hao L, Yang QH, Yang TP, Gindler J, et al. MTHFR 677C->T genotype is associated with folate and homocysteine concentrations in a large, population-based, double-blind trial of folic acid supplementation. Am J Clin Nutr. 2011;93:1365–72.
- Farrell CJ, Kirsch SH, Herrmann M. Red cell or serum folate: What to do in clinical practice? Clin Chem Lab Med. 2013;51:555–69.
- 24. Anderson CA, Beresford SA, McLerran D, Lampe JW, Deeb S, Feng Z, Motulsky AG. Response of serum and red blood cell folate concentrations to folic acid supplementation depends on methylenetetrahydrofolate reductase C677T genotype: Results from a crossover trial. Mol Nutr Food Res. 2013;57:637–44.
- Du B, Tian H, Tian D, Zhang C, Wang W, Wang L, et al. Genetic polymorphisms of key enzymes in folate metabolism affect the efficacy of folate therapy in patients with hyperhomocysteinaemia. Br J Nutr. 2018;119:887–95.

- Hiraoka M, Kagawa Y. Genetic polymorphisms and folate status. Congenit Anom (Kyoto). 2017;57:142–9.
- 27. Fezeu LK, Ducros V, Guéant JL, Guilland JC, Andreeva VA, Hercberg S, Galan P. MTHFR 677C → T genotype modulates the effect of a 5-year supplementation with B-vitamins on homocysteine concentration: The SU.FOL.OM3 randomized controlled trial SU.FOL.OM. PLOS ONE. 2018;13:e0193352.
- Blatter J, Han YY, Forno E, Brehm J, Bodnar L, Celedón JC. Folate and asthma. Am J Respir Crit Care Med. 2013;188:12–7.
- 29. Marchetta CM, Devine OJ, Crider KS, Tsang BL, Cordero AM, Qi YP, et al. Assessing the association between natural food folate intake and blood folate concentrations: A systematic review and Bayesian meta-analysis of trials and observational studies. Nutrients. 2015;7:2663–86.
- Wang T, Zhang HP, Zhang X, Liang ZA, Ji YL, Wang G. Is folate status a risk factor for asthma or other allergic diseases? Allergy Asthma Immunol Res. 2015;7:538–46.
- Parr CL, Magnus MC, Karlstad Ø, Haugen M, Refsum H, Ueland PM, et al. Maternal folate intake during pregnancy and childhood asthma in a population-based cohort. Am J Respir Crit Care Med. 2017;195:221–8.
- 32. Montrose L, Ward TJ, Semmens EO, Cho YH, Brown B, Noonan CW. Dietary intake is associated with respiratory health outcomes and DNA methylation in children with asthma. Allergy Asthma Clin Immunol. 2017;13:12.
- 33. White GP, Hollams EM, Yerkovich ST, Bosco A, Holt BJ, Bassami MR, et al. CpG methylation patterns in the IFN gamma promoter in naive T cells: Variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol. 2006;17:557–64.

Supplemental Materials

Supplementary Table S1. Pearson correlation coefficients between intakes of methyl donors and other nutrients.

	folate	Vit B ₂	Vit B ₆	Vit C	Vit E	n-3	n-6
folate	1	0.28304	0.66397	0.61955	0.52131	0.34862	0.40947
		<.0001	< .0001	< .0001	< .0001	< .0001	< .0001
	2333	2333	2333	2331	2332	2332	2332
Vit B ₂	0.28304	1	0.43261	0.34142	0.3236	0.30695	0.39964
	<.0001		< .0001	< .0001	< .0001	< .0001	< .0001
	2333	2333	2333	2331	2332	2332	2332
Vit B ₆	0.66397	0.43261	1	0.68139	0.67168	0.4476	0.5286
	< .0001	< .0001		< .0001	< .0001	< .0001	< .0001
	2333	2333	2333	2331	2332	2332	2332
Vit C	0.61955	0.34142	0.68139	1	0.35567	0.19426	0.26069
	<.0001	< .0001	< .0001		< .0001	< .0001	< .0001
	2331	2331	2331	2331	2331	2331	2331
Vit E	0.52131	0.3236	0.67168	0.35567	1	0.79312	0.84358
	<.0001	< .0001	< .0001	< .0001		< .0001	< .0001
	2332	2332	2332	2331	2332	2332	2332
n-3	0.34862	0.30695	0.4476	0.19426	0.79312	1	0.76516
	<.0001	< .0001	< .0001	< .0001	< .0001		< .0001
	2332	2332	2332	2331	2332	2332	2332
n-6	0.40947	0.39964	0.5286	0.26069	0.84358	0.76516	1
	<.0001	< .0001	< .0001	< .0001	< .0001	< .0001	
	2332	2332	2332	2331	2332	2332	2332

Supplementary Table S2. The amount of high, medium, and low intake of folate.

	N	mean	SD
Folate (µg DFE/day)	2333	185.88	65.78
Low	777	119.76	24.01
Medium	778	179.85	15.88
High	778	257.95	50.50
Folate (µg DFE/day)	2333	185.88	65.78
Low	1555	149.82	36.29
High	778	257.95	50.50

Supplementary Table S3. Association between dietary methyl donors intake, *MTHFR* polymorphism, and childhood asthma and atopy.

	Wheezing sy	mptoms in the pa	st 12 months	Ast	thma diagnosis, e	ver
	N	aOR	(95%CI)	N	aOR	(95%CI)
Folate						
Low	92/604	1.00		81/615	1.00	
Medium	93/609	1.02	(0.75-1.40)	89/611	1.12	(0.81–1.55)
High	68/633	0.75	(0.53-1.05)	63/637	0.77	(0.54–1.09)
Vitamin B ₂						
Low	90/605	1.00		78/615	1.00	
Medium	72/624	0.78	(0.56–1.08)	71/624	0.90	(0.63–1.26)
High	91/617	0.98	(0.71-1.35)	84/624	1.03	(0.74–1.43)
Vitamin B ₆						
Low	85/603	1.00		81/606	1.00	
Medium	88/615	1.05	(0.76–1.46)	76/625	0.94	(0.67–1.32)
High	80/628	0.95	(0.68–1.32)	76/632	0.93	(0.67–1.31)

	BI	$HR (PC_{20} \le 8 mg/s)$	dl)		Atopy	
	N	aOR	(95%CI)	Ν	aOR	(95%CI)
Folate						
Low	58/306	1.00		98/279	1.00	
Medium	54/320	0.86	(0.58–1.30)	111/273	1.19	(0.86–1.65)
High	54/298	0.95	(0.63-1.43)	102/267	1.11	(0.80-1.54)
Vitamin B ₂						
Low	56/310	1.00		100/279	1.00	
Medium	52/308	0.97	(0.64–1.47)	101/272	1.01	(0.72-1.40)
High	58/306	1.07	(0.71-1.61)	110/268	1.05	(0.76–1.46)
Vitamin B ₆						
Low	63/315	1.00		110/281	1.00	
Medium	56/299	0.90	(0.60-1.34)	114/253	1.16	(0.85–1.60)
High	47/310	0.75	(0.49–1.13)	87/285	0.80	(0.58–1.11)

APJAI

		Ator in	Atopic wheezing symptom in the past 12months	ymptom onths	Atopic	Atopic asthma diagnosis, ever	10sis, ever		Atopic BHR (PC ₂₀ ≤ 8 mg/dl)	k dl)
		z	aOR	(95%CI)	z	aOR	(95%CI)	z	aOR	(95%CI)
Folate	MTHFR									
Low	CC	11/90		1	8/93		1	10/90		1
High	CC	2/39	0.51	(0.11 - 2.49)	1/40	0.32	(0.04 - 2.69)	1/39	0.22	(0.03 - 1.84)
Low	CT + TT	12/201	0.54	(0.23 - 1.31)	13/200	0.80	(0.31 - 2.05)	11/195	0.51	(0.21-1.27)
High	CT + TT	2/107	0.17	(0.04 - 0.80)	4/105	0.46	(0.13 - 1.62)	7/97	0.67	(0.24 - 1.88)
P for trend			0.0187*			0.3420			0.3864	
P for interaction			0.6579			0.6310			0.1365	
Vitamin B_2	MTHFR									
Low	CC	9/86		1	5/90		1	8/87		1
High	CC	4/43	0.96	(0.26 - 3.57)	4/43	1.48	(0.35 - 6.28)	3/42	0.83	(0.20 - 3.46)
Low	CT+TT	11/196	0.61	(0.23 - 1.57)	12/195	1.14	(0.38 - 3.48)	13/186	0.80	(0.31 - 2.06)
High	CT+TT	3/112	0.26	(0.07 - 1.01)	5/110	0.75	(0.20 - 2.80)	5/106	0.52	(0.16 - 1.71)
P for trend			0.0392*			0.6307			0.3135	
P for interaction			0.3822			0.3790			0.7941	
Vitamin B ₆	MTHFR									
Low	CC	10/89		1	6/93		1	10/89		1
High	CC	3/40	0.75	(0.19 - 2.99)	3/40	1.17	(0.27–5.17)	1/40	0.20	(0.02 - 1.66)
Low	CT+TT	11/199	0.55	(0.22-1.37)	14/196	1.15	(0.42 - 3.20)	12/189	0.56	(0.23 - 1.38)
High	CT+TT	3/109	0.26	(0.07-0.99)	3/109	0.44	(0.10 - 1.84)	6/103	0.52	(0.18 - 1.51)
P for trend			0.0352*			0.3975			0.2579	
<i>P</i> for interaction			0.6239			0.2576			0.2006	

Adjusted for age, sex, BMI (continuous), parental history of Asthma/Allergic Rhinitis/Atopic Dermatitis, Environmental Tobacco Smoke (ETS), maternal et *Significantly different at P < 0.05. aOR, adjusted odds ratio; BHR, bronchial hyperresponsive; BMI, body mass index; CI, confidence interval; *MTHFR*, methylenetetrahydrofolate reductase;

Supplementary Table S5. Summary of related studies on folate status, allergy outcomes, and MTHFR polymorphisms.

References							
	Country	Sample size	Age	Folic acid exposure	Key findings	Allergic outcome	C677T mutation in MTHFR
Granell ¹⁴	UK	5,364	7-8 yr	Maternal folate intake in the third trimester of pregnancy	No significant association with	Atopy (≥ 1 positive skin test to allergens)	No associations
Thuesen ¹⁵	Denmark	6,784	30-60 yr	Serum folate	Inversely associated with	Physician-diagnosed asthma	TT genotype
Husemoen ¹⁹	Denmark	1,671	30-60 yr	Serum folate	Inversely associated with	Atopy	TT genotype
Zou ³⁴	China	433 asthmatic and 1,249 healthy			Significantly association with	Atopic asthma	T'T genotype
Matsui and	S11	8 083	7-85 vr	Sernim folate	Inversely associated with	Wheeze, total IgE, and atopy	
Matsui ¹⁰		0000	2-02/1		No significant association with	Physician-diagnosed asthma	
Bueso ³⁵	Norway	169	13-14 yr	Dietary intake of folate	No significant association with	Physician-diagnosed asthma	
		180		Serum folate	No significant association with	Asthma	
Farres ³⁶	Egypt	Among subjects with asthma		Serum folate	Inversely associated with	Total 1gE	
					Significantly association with	Physician-diagnosed asthma ever	
Woods ⁹	Australia	1,601	20-44 yr	Dietary intake of folate	No significant association with	Current asthma, airway responsiveness, or atopy	
Shaheen ³⁷	India	40	2-4 yr	Serum folic acid	No significant association with	Atopic dermatitis	
Patel ³⁸	England	1,030	45-75	Dietary intake of folate	Significantly association with	Reduced odds of physician-diagnosed asthma	
				Increased comme folger lands at a hafan	Significantly association with	Allergic sensitization	
Okupa ³⁹	U.S.	138	2-9 yr		No significant association with	Total IgE, asthma, or wheezing at ages 6 or 9 yr	
Lin ⁴⁰	U.S.	144	5-17 yr	Serum folate	No significant association with	Fractional exhaled nitric oxide, degree of atopy, lung function, or hospitalizations for asthma	
				Folate level in the second quartile	Significantly association with	Increased total IgE	
Miyake ⁴¹	Japan	763	16-24 mo	Maternal folate intake at any trimester of pregnancy	No significant association with	Wheeze or eczema	
Litonjua ⁴²	U.S.	1,290	2 yr	Maternal folate intake in the first and second trimesters of pregnancy	No significant association with	Wheeze or eczema	
Håberg ⁴³	Norway	32,077	18 mo	Folic acid supplementation in the first trimester of pregnancy	Significantly association with	Increased risk of wheeze, LRIs, and hospitalizations	

(Continued)
S5.
Table
nentary
Supplei

References	Country	Sample size	Age	Folic acid exposure	Key findings	Allergic outcome	C677T mutation in <i>MTHFR</i>
Nwaru ⁴⁴	Finland	2,441	5 yr	Maternal folate intake in the third trimester of pregnancy	No significant association with	Asthma	
TATL: +	A for the	507		Maternal folic acid supplementation in	Significantly association with	Increased risk of asthma at 3.5 yr	
VV IIILIOW	Ausurama	674	ıý c.c	late pregnancy	No significant association with	Increased risk of asthma at 5.5 yr	
97 1 L C		C C C	c	Folic acid supplementation during	No significant association with	Asthma symptoms, wheeze, LRIs, or eczema	
bekkers	INELNETIANG	3,/ 80	8 yr	pregnancy	Inversely associated with	Airway responsiveness or allergic sensitization	
74	Landhold	700 C	ľ	Maternal folate supplementation during pregnancy	No significant association with	Allergic sensitization at age 2 yr or asthma at age 6-7 yr	
Magdenjns.	Iverneriand	2,834	/ yr	Maternal RBC folate level in the last trimester of pregnancy	Inversely associated with	Asthma at age 6-7 yr	
Kiefte-de	N 144 Landard	0 1 1		Maternal plasma folate level in the first	Significantly association with	Increased odds of eczema	
Jong ⁴⁸	Ivenierianu	0,/42	4 yr	trimester of pregnancy	No significant association with	Asthma at age 4 yr	
Haberg ⁴⁹	Norway	1,962	3 yr	Maternal folate level in the second trimester of pregnancy	Significantly and linearly association with	Increased odds of asthma	

³⁴Zhonghua Jie He He Hu Xi Za Zhi. 2003 Mar;26(3):161-4. ³⁵Pediatr Allergy Immunol. 2011 Feb;22(1 Pt 1):19-24. ³⁶Intern Med. 2011;50(3):205-11.

³⁷Indian J Dermatol. 2011 Nov;56(6):673-7.

³⁸Thorax. 2006 May;61(5):388-93.

³⁰J Allergy Clin Immunol. 2013 Jan;131(1):226-8.e1-2. ⁴⁰J Allergy Clin Immunol. 2013 Mar;131(3):918-20. ⁴¹Pediatr Allergy Immunol. 2011 Feb;22(1 Pt 1):69-74.

⁴²Am J Clin Nutr. 2006 Oct;84(4):903-11.

⁴³Arch Dis Child. 2009 Mar;94(3):180-4.

⁴⁴Eur J Clin Nutr. 2011 Aug.65(8):937-43. ⁴⁵Am J Epidemiol. 2009 Dec 15;170(12):1486-93. ⁴⁶Eur Respir J. 2012 Jun;39(6):1468-74.

⁴⁷Pediatrics. 2011 Jul;128(1):e135-44.

⁴⁵ Nutr. 2012 Apr;142(4):731-8. ⁴⁹ Allergy Clin Immunol. 2011 Jan;127(1):262-4, 264.e1.

