

The relationship between outdoor air pollutants and atopic dermatitis of adults: A systematic review and meta-analysis

Yu-Yu Hsiao,¹ Yi-Hsing Chen,^{2,3,4} Wei-Ting Hung,² Kuo-Tung Tang^{2,3,5}

Abstract

Background: Atopic dermatitis (AD) poses a significant disease burden in adults. Environmental factors are essential in its pathogenesis.

Objective: Given the possible role of air pollutants in allergic diseases, it is worthwhile to summarize the effects of outdoor air pollution on adult AD.

Methods: We undertook a systematic review based on PubMed and EMBASE as of August 16, 2021, and found 20 relevant studies. A random-effects meta-analysis was carried out.

Results: Regarding long-term effects (within months to years), traffic-related air pollution and particulate matter < 2.5 μ m in diameter (PM2.5, per 10 μ g/m³ increment) are associated with the prevalence of adult AD (OR 1.40, 95%CI [1.24, 1.58] and 1.67, 95%CI [1.26, 2.21]). Exposures to PM2.5 and nitrogen dioxide are associated with incident AD, with ORs of 2.30 (95%CI: 1.25, 4.25) and 1.30 (95%CI: 1.04, 1.61) per 10 μ g/m³ increment. In terms of short term effects (within days), exposure to particulate matter < 10 μ m in diameter (PM10) and sulfur dioxide (SO₂) are associated with exacerbations of AD at lag day 0 based on those time-series studies, with an excessive risk of 2.9%, in particular, per 10 μ g/m³ increment in SO₂ exposure. In addition, both short-term and long-term exposures to these air pollutants are associated with AD symptoms (eczema, pruritus, and sleep disturbance).

Conclusions: Outdoor air pollutants exert both short-term and long-term adverse effects on adult AD, contributing to its development, severity and exacerbation of symptoms. The influence of air pollution should be considered in the management of adult AD.

Key words: Air Pollution, Atopic Dermatitis, Nitrogen Dioxide, Particulate Matter, Sulfur Dioxide

Citation:

Hsiao, Y. Y., Chen, Y. H., Hung, W. T., Tang, K. T. The relationship between outdoor air pollutants and atopic dermatitis of adults: A systematic review and meta-analysis. *Asian Pac J Allergy Immunol*. https://doi.org/10.12932/ ap-060922-1448

Affiliations:

- ¹ Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- ² Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- ³ Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- ⁴ College of Medicine, National Chung Hsing University, Taichung, Taiwan

⁵ Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan

Corresponding author: Kuo-Tung Tang Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital No. 1650, Sec. 4, Taiwan Blvd., Taichung 40705, Taiwan E-mail: dirac1982@vghtc.gov.tw

Introduction

Atopic dermatitis (AD) is a chronic, relapsing, eczematous disease characterized by severe pruritus and skin dryness. It poses a heavy burden on patients' quality of life and healthcare resources.¹ The human skin is in direct contact with a variety of environmental factors, such as humidity,

allergens, chemical substances, etc., which play an essential role in the pathogenesis of AD.² The prevalence of AD is increasing globally, especially in the developing countries.³ One predisposing factor is likely pollutants in the ambient air. Growing evidence supports the contribution of air pollution to allergic diseases like asthma and AD in children with some controversy.⁴⁻⁶ Recent epidemiological studies reported a high prevalence of AD in adults, reaching 10-17% in the general population.⁷⁻⁹ However, few studies have been published on the influence of air pollution on adult AD.¹⁰⁻¹²

In recent decades, a number of studies have been conducted to investigate this issue. We hypothesized that outdoor air pollutants adversely affects AD in adults and therefore undertook a comprehensive systematic review to summarize current knowledge on the influence of these air pollutants on adult AD.

Methods

Literature search

Our review focused on studies investigating the relationship between AD in adults (\geq 18 years) and outdoor chemical air pollutants, including traffic-related air pollution, particulate matter, nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃), and carbon monoxide (CO). The algorithm followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. We searched both the EMBASE and MEDLINE databases, and reviewed English literature till August 16, 2021. The search strategy is illustrated in **Table S1**, and it combined two sets of terms: one set involving a variety of outdoor air pollutants and the other involving atopic dermatitis. A review is exempted from the Institutional Review Board of Taichung Veterans General Hospital. This systematic review was registered in PROSPERO (CRD42022310716).

Selection of studies

Three authors (YY Hsiao, YH Chen, and KT Tang) independently assessed the titles and abstracts identified by the searches described above. The relevant full-text articles were then retrieved. Two authors (YY Hsiao and KT Tang) independently evaluated the full-text articles for eligibility. We selected articles, including conference abstracts, relevant to the relationship between outdoor air pollution and adult AD. These studies included cohorts, cross-sectional, case-control, and time-series studies. The references for the selected articles were also reviewed for relevance. Studies excluded were those enrolling children and/or adolescents only (< 18 years of age). We also excluded those studies concerning exclusively occupational exposure, indoor air pollutants, and/or tobacco smoking. Studies published in languages other than English were excluded. In case of controversy, it was resolved through group discussion. Finally, a total of 20 studies were finally identified (Figure 1).¹⁰⁻²⁹ We categorized selected studies into studies regarding long-term effects (within months to years) and short-term effects (within days) of air pollutants on AD, with the cut-off duration of 30 days.

Data extraction

Information regarding the influence of outdoor chemical air pollutants on the incidence, prevalence and/or severity of AD in adults was independently retrieved from each study by two authors (YY Hsiao and KT Tang), and recorded in a standardized Excel file. The outcome measures included odds ratios (ORs) and risk ratios per 10 μ g/m³ increment in exposure levels to air pollutants. For a time-series study, risk ratios derived from either the single or cumulative lag model were recorded. We did not contact authors for unreported data.

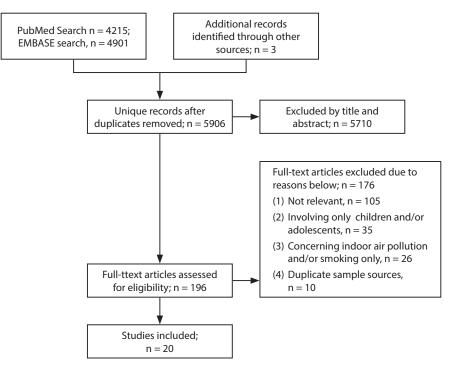


Figure 1. The algorithm of study selection.

Risk of bias

Risk of bias was evaluated using the tool: Risk of Bias in Non-Randomised Studies of Interventions (ROBINS-I).³⁰ This tool incorporates 7 domains, including confounding, selection of participants, classification of intervention, deviation from interventions, missing outcome data, measurement of outcomes, and selection of reported result. The overall risk of bias was rated as follows: 0, no information; 1, low risk; 2, moderate risk; 3, serious risk; and 4, critical risk. Two authors (YY Hsiao and KT Tang) independently assessed these risks of bias. In case of disagreement, it was resolved through group discussion.

Statistical analyses

Statistical analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA). The summary estimates of odds ratio and risk ratio were derived using the command "metan" according to a random effects model following the procedure of DerSimonian & Laird provided data were obtained from two or more studies of similar design (e.g. cohorts or cross-sectional studies).³¹ Risk ratios from the time-series studies were presented as excessive risks. The heterogeneity across studies was quantified based on Tau², Chi², and I² measures derived from the Mantel-Haenszel model. Begg's and Egger's tests were used to assess publication bias, while funnel plots were presented to visualize asymmetry. A p value < 0.05 was considered statistically significant. The Bonferroni correction was undertaken in the meta-analyses regarding different lag times in the time-series studies.

Stratification and sensitivity analyses

Analyses after stratification according to gender and season were performed whenever data were available. In addition, sensitivity analyses were performed after excluding studies conducted in a single center or studies with an overall high risk of bias (serious or critical).

Results

Characteristics of selected studies

Characteristics of the selected studies are listed in **Table 1**. In the 9 studies on long-term effects of air pollutants, there were 4 cohorts and 5 cross-sectional studies. In these studies, female constituted around 50% of the subjects. The only exception was the Study on the influence of Air pollution on Lung Function Inflammation and Ageing (SALIA) cohort, in which only women were recruited as subjects.¹⁴ Their mean age was also older (74 years) when compared with those in other studies.

In the 11 studies on short-term effect of air pollutants, most were time-series studies. Only one was a time-stratified cross-over study.²⁹ Since a time-stratified cross-over air pollution study is considered equivalent to a time-series study,³² we synthesized their data altogether. While adult cases constituted the majority of subjects, all ages were accounted for in these studies. The proportion of female Air pollution and adult atopic dermatitis

subjects was 50-60% in most of the studies except for an Iranian study, in which 84% of participants were female.²¹

Most outcome measures in these time-series studies were based on hospital records of outpatient and/or emergency department visits due to AD. Only one study was based on questions on AD symptoms.²¹ These studies were all conducted in Asian countries and 7 of them were single-center studies.

Long-term effects of air pollutants on adult AD

As shown in Figure 2a, exposures to traffic-related air pollution and PM2.5 were associated with prevalent adult AD (OR 1.40, 95% CI [1.24, 1.58] and 1.67, 95%CI [1.26, 2.21]). Exposures to particulate matter $< 2.5 \ \mu m$ in diameter (PM2.5) and NO₂ were associated with incident AD, with ORs of 2.30 (95% CI: 1.25, 4.25) and 1.30 (95% CI: 1.04, 1.61) per 10 µg/m³ increase respectively. Regarding effect of particulate matter < 10 µm in diameter (PM10) on prevalent AD, the inter-study heterogeneity was moderate across studies. The study of Patella et al. recruited 58 pediatric and adult AD patients and recorded their monthly disease activity based on the index of SCORing Atopic Dermatitis (SCORAD).¹⁵ An increase of 10 μ g/m³ in PM10, NO₂, and O₃ concentrations were associated with an increase of AD symptoms by 3.0% (95% CI: 0.3, 4.2), 2.7% (95% CI: 0.7, 4.7), and 3.0% (95% CI: 1.2, 4.7) respectively. Furthermore, exposures to these pollutants were more predictive of disease severity than weather factors.

Short-term effects of air pollutants on adult AD

Results of meta-analyses on short-term effects of air pollutants on AD exacerbations (outpatient and/or emergency department visits) based on time series studies are summarized in Figure 2b and 2c. Data with respect to CO are not shown due to wide 95% confidence intervals. In the single lag model, PM2.5, PM10 and SO, were associated with AD exacerbations at lag day 0, although the association between PM2.5 and AD exacerbations was not statistically significant after correction of multiple comparisons. In particular, exposures to SO₂ was associated with excessive risks of 2.9% (95%CI: 1.3, 4.7) per 10 µg/m3 increase at lag day 0. We also observed a trend in which the effects of pollutants PM2.5, PM10, SO2, and NO2 were attenuated with the increasing lag time. In contrast, O₂ was significantly associated with AD exacerbations at lag day 4 and 7. On the other hand, in the cumulative model, some of the associations regarding PM10, SO₂, and O₂ were statistically significant, despite no obvious trend. In particular, SO, exposure was significantly associated with an excessive risk of 2.3-3.7% for AD exacerbations per 10 µg/m³ increment. Details of the meta-analyses are shown in Figure S1 and S2, and substantial study heterogeneity existed in most analyses. In addition, Nakhjirgan et al. reported that both PM2.5 and PM10 are associated with skin itching and sleep disturbance at lag day 0, 1, and 2 in AD patients.²¹

Study⁺	Country	Study design (duration)	Sample size (proportion of female)	Mean/median age (years)	Outcome ascertainment methods	Statistical methods	Confounders adjusted for in the analysis	Measurement of exposure to air pollutants
rm effects (Long-term effects (within months or years)	r years)						
Montnemery et al. (2009) [10]	Sweden	Cross-sectional	8469	20–59*	Questionnaire	Logistic regression	Age, sex, and occupation	Questionnaire
Pesce et al. (2015) [11]	Italy	Cross-sectional	10464	20-44*	Questionnaire	Logistic regression	Age, sex, education level, occupation, smoking, proximity to industrial plants, residential area, geo-climatic area, season, center-specific rank of response, and type of survey	Questionnaire
Seo et al. (2016) [12]	Korea	Cross-sectional	N.A.	N.A.	Health insurance claims data	Linear regression	Socioeconomic and weather factors	Monitoring stations
Tang et al. (2017) [13]	Taiwan	Cross-sectional	5115 (57%)	44	Health insurance claims data	Logistic regression	Age, sex, levels of urbanization, family income, and exposures to other air pollutants	Monitoring stations
Huls et al. (2018) [14]	Germany	Cohort (19 years) and cross-sectional	834(100%)	74	Questionnaire	Logistic regression	Age, body mass index, educational status, indoor combustion of fossil fuels, smoking, and exposure to second-hand smoke	Land-use regression
Patella et al. (2020) [§] [15]	Italy	Cohort (1.5 years)	60 (47%)	24	Hanifin and Rajka criteria	Generalized linear mixed model	Age, sex, baseline disease severity, weather factors, and use of topical corticosteroids	Monitoring stations
Tang et al. (2020)⁵ [16]	Taiwan	Cross-sectional	34 (50%)	33	Hanifin and Rajka criteria	Mann-Whitney U test	Nil	Urine metabolites
Park et al. (2021) [17]	Korea	Retrospective cohort (4.9 years)	209168 (54%)	N.A.	Health insurance claims data	Cox proportional hazards regression	Age, sex, income, comorbidity, and meteorological variables	Monitoring stations
Lopez et al. (2021) [18]	Australia	Cohort (10 years)	3153 (50%)	53	ISAAC definition	Logistic regression	Age, sex, household cooking by indoor combustion of solid and gas fuels, occupation, education level, smoking, and second-hand smoking	Satellite-based land-use regression

Table 1. Study characteristics.

IDENTIFY IDENTIFY Lift et al. (2016)ChuaThree series study51058N.A.Hoppial recordsGAMCalendra day dry of the week, and holidaysAnnLift et al. (2018)ChuaThree series study51058N.A.Hoppial recordsGAMCalendra day dry of the week, and holidaysAnnLigt al. (2018)ChuaThree series study510580N.A.Hoppial recordsDistributed liggDay of the week, and holidaysAnnNage stal.ChuaThree series study31(84%)24QuestionnaireCencularedMini dity and outdoor stayMiniNage stal.ChuaThree series study31(84%)34Mini dity and outdoor stayMiniNage stal.ChuaThree series study31(84%)SaAnnMini dity and outdoor stayMiniNage stal.ChuaThree series study31(84%)NAHenth instarmedAnnCuo 30(3) [21]ChuaThree series study31(84%)NAMiniCuo 30(3) [21]ChuaThree series study51(80%)NAHenth instarmedAnnCuo 30(3) [21]ChuaThree series study51870 (25%)NAMiniMiniCuo 30(3) [21]ChuaThree series study51870 (25%)NAMiniMiniCuo 30(3) [21]ChuaThree series study51870 (25%)NAMiniMiniCuo 30(3) [21]ChuaThree series study51870 (25%)NAMiniMiniC	Study [*]	Country	Study design (duration)	Sample size (proportion of female)	Mean/median age (years)	Outcome ascertainment methods	Statistical methods	Confounders adjusted for in the analysis	Measurement of exposure to air pollutants
ChuseTime-series study (speak)G1036N.A.Hospital recordsGAMCalentar day day of the week, and holidaysChuseTime-series study (Three series study (Three series study)2305 (31%)N.A.Hospital recordsDistributed bagsDistributed bagsItanTime-series study (Three series study)216 (31%)240Deseries studyDeseries studyDeseries studyItanTime-series study (Three series study)216 (31%)Deseries studyDeseries studyDeseries studyItanTime-series study (Three series study)E40Deseries studyDeseries studyDeseries studyItanTime-series studyE40Deseries studyDeseries studyDeseries studyDeseries studyItanTime-series studyE40Deseries studyDeseries studyDeseries studyDeseries studyItanTime-series studyE40Deseries studyDeseries study<	Short-term effects								
ChiaTime-series study (5 years)Za05 (31%)N.A.Hopital records honimer modelDay of the week and holidaysIranTime-series study (5 days)3 (8 4%)2 4OuestionnairePay of the week and holidaysIranTime-series study (2 days)1 (8 4%)2 4OuestionnairePay of the week calendar time- antional holidaysIranTime-series study (2 days)9 (8 97 (60%)8 4Pay of the week calendar time- antional holidaysIranTime-series study (5 years)9 (8 97 (60%)NAHealth insurance (2 mediate)Pay of the week calendar time- antional holidaysIranTime-series study (5 years)9 (8 97 (60%)NAHealth insurance (2 mediate)Pay of the week calendar time- antional holidaysIranTime-series study (2 years)9 (8 97 (60%)NAHealth insurance (2 mediate)Pay of the week calendar time- antional holidaysIranTime-series study (5 years)9 (8 97 (60%)NAHealth insurance (2 mediate)Pay of the week calendar time- antional holidaysIranTime-series study (5 years)9 (9 (9 (9 (%)))NAHealth insurance (2 miner mode)Pay of the week calendar time- antional holidaysIranTime-series study (5 years)1 (8 (9 (%)))NAHealth insurance (2 MM)Pay of the week calendar time- (2 MM)IranTime-series study (5 years)1 (8 (9 (%)))NAHealth insurance (2 MM)Pay of the week calendar time- (2 MM)IranTime-series study (5 years)1	Li et al. (2016) [§] [19]	China	Time-series study (5 years)	510158	N.A.	Hospital records	GAM	Calendar day, day of the week, and holidays	A monitoring station
Image: limitingImage: limitingCheralizedHemitingHemitingChinaTime-series study18.96.9059HenthinsuranceCAMPayofit week.calendartime.national holidaysChinaTime-series study1966.9058HenthinsuranceCAMPayofit week.calendartime.national holidaysChinaTime-series study6987.60%NAHenthinsuranceCAMPayofit week.calendartime.national holidaysChinaTime-series study51387.052%NAHenthinsuranceCAMPayofit week.calendartime.national holidaysKoreaTime-series study51387.052%NAHenthinsuranceCAMPayofit week.calendartime.national holidaysKoreaTime-series study51387.052%NAHenthinsuranceCAMPayofit week.calendartime.national holidaysLinkeyTime-series study2549.68%NAHenthinsuranceCAMPayofit week.calendartime.national holidaysLinkeyTime-series study2549.68%NAHospital recordsCAMPayofit week.calendartimeLinkeyTime-series study2549.68%NAHospital recordsDistribute lagsDistribute lagsLinkeyTime-series study2549.68%NAHospital recordsDistribute lagsDistribute lagsLinkeyTime-series study2549.68%NAHospital recordsDistribute lagsDistribute lagsLinkeyTime-series study2549.68%NAHospital recordsDistribute lagsDistribute lagsLinkey <t< td=""><td>Li et al. (2018)[§] [20]</td><td>China</td><td>Time-series study (5 years)</td><td>72305 (51%)</td><td>N.A.</td><td>Hospital records</td><td>Distributed lag nonlinear model</td><td>Day of the week and holidays</td><td>Monitoring stations</td></t<>	Li et al. (2018) [§] [20]	China	Time-series study (5 years)	72305 (51%)	N.A.	Hospital records	Distributed lag nonlinear model	Day of the week and holidays	Monitoring stations
ChiesTime-series study (2years)196091 (60%)8Heath insurance (aims dataDay of the week, calendar time, national holidaysChina(2years)(487) (60%)N.A.Hospital recordsCAMDay of the week, calendar time, national holidaysChina(5years)(5years)(387) (53%)N.A.Heath insuranceCAMSeasonal and long-term trends, day of the week,Korea(1me-series study(3187) (53%)N.A.Heath insuranceCAMSeasonal and long-term trends, day of the week,Lukey(5years)(5years)N.A.Heath insuranceCAMPage and long-term trends, day of the week,Lukey(5years)(5years)N.A.Hospital recordsDay of the week and temperatureLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Day of the week and temperatureLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Hospital recordsLukey(5years)(5years)(5years)N.A.Hospital records <td< td=""><td>Nakhjirgan et al. (2019)[§] [21]</td><td>Iran</td><td>Time-series study (62 days)</td><td>31 (84%)</td><td>24</td><td>Questionnaire</td><td>Generalized estimating equations</td><td>Humidity and outdoor stay</td><td>Monitoring stations</td></td<>	Nakhjirgan et al. (2019) [§] [21]	Iran	Time-series study (62 days)	31 (84%)	24	Questionnaire	Generalized estimating equations	Humidity and outdoor stay	Monitoring stations
ChinaTime-series study (5 years)Ga97 (60%)N.A.Hospital recordsGAWResonal and long-term trends, day of the week.KoreaTime-series study5138 (05%)N.A.Health insuranceGAWResonal and long-term trends, day of the week.TurkeyTime-series study5138 (05%)N.A.Heapth insuranceGAWRepresenture humidity. season, day of the week.TurkeyTime-series study2754 (58%)N.A.Hospital recordsDay of the week and temperatureTurkeyTime-series study2972 (51%)N.A.Hospital recordsDay of the week and temperatureChinaTime-series study2972 (51%)N.A.Hospital recordsCAMTemperature and humidity.ChinaTime-series study1689 (65%)N.A.Hospital recordsCAMTemperature and humidity. <td>Wang et al. (2019) [22]</td> <td>China</td> <td>Time-series study (2 years)</td> <td>1966991 (60%)</td> <td>58</td> <td>Health insurance claims data</td> <td>GAM</td> <td>Day of the week, calendar time, national holidays, temperature, and humidity</td> <td>A monitoring station</td>	Wang et al. (2019) [22]	China	Time-series study (2 years)	1966991 (60%)	58	Health insurance claims data	GAM	Day of the week, calendar time, national holidays, temperature, and humidity	A monitoring station
KoreaTime-series study (4 years)513870 (52%)N.A.Health insurance (alims dataGAMTemperature, humidity, season, day of the week, and public holidaysTurkey(6, years)27549 (58%)N.A.Hospital recordsDistributed lagDay of the week and temperatureTurkey(6, syears)2972 (51%)N.A.Hospital recordsCAMTemperature and humidity, season, day of the weekChinaTime-series study2972 (51%)N.A.Hospital recordsCAMTemperature and humidityChinaTime-series study16891 (62%)N.A.Hospital recordsCAMTemperature and humidity, day of the week, calendarChinaTime-series study16891 (62%)N.A.Hospital recordsCAMTemperature, humidity, day of the week, calendarChinaTime-series study16891 (62%)N.A.Hospital recordsCAMTemperature, humidity, day of the week, calendarChinaTime-series study16891 (62%)N.A.Hospital recordsCAMTemperature, humidity, day of the week, calendarChinaTime-series study100751 (50%)N.A.Hospital recordsCAMTemperature, humidity, day of the week, calendarChinaTime-series study100751 (50%)N.A.Hospital recordsCAMTemperature, humidity, day of the week, calendarChinaTime-series study100751 (50%)N.A.Hospital recordsCAMTemperature, humidity, calendar day and day of the week, calendarChinaTime-series study18316N.A.	Guo et al. (2019) [§] [23]	China	Time-series study (5 years)	64987 (60%)	N.A.	Hospital records	GAM	Seasonal and long-term trends, day of the week, and holidays	Monitoring stations
TurkeyTime-series study (6.5 years)2749 (58%)N.A.Hospital recordsDistributed lag noninear modelDay of the week and temperatureChinaTime-series study (5 years)2972 (51%)N.A.Hospital recordsGAMTemperature and humidityChinaTime-series study (6 years)2972 (51%)N.A.Hospital recordsGAMTemperature and humidityChinaTime-series study (6 years)16891 (62%)N.A.Hospital recordsGAMTemperature, humidity, day of the week, calendarChinaTime-series study (6 years)30751 (50%)N.A.Hospital recordsGAMTemperature, humidity, day of the week, calendarKoraTime-series study (6 years)30751 (50%)N.A.Hospital recordsGAMTemperature, humidity, day of the week, calendarKoraTime-series study (6 years)18316N.A.Hospital recordsGAMTemperature, humidity, calendar day, and day of the weekKoraTime-series study (6 years)18316N.A.Hospital recordsGAMTemperature, humidity, calendar day, and day of the weekKoratime-series very (9 week)18316N.A.Health insurance conditionalMetorological factors and national holidays	Baek et al. (2021) [24]	Korea	Time-series study (4 years)	513870 (52%)	N.A.	Health insurance claims data	GAM	Temperature, humidity, season, day of the week, and public holidays	Monitoring stations
ChinaTime-series study (5 years)2972 (51%)N.A.Hospital recordsGAMTemperature and humidityChinaTime-series study (6 years)16891 (62%)N.A.Hospital recordsGAMTemperature, humidity, day of the week, calendar day, and holidaysChinaTime-series study (6 years)30751 (50%)N.A.Hospital recordsGAMTemperature, humidity, day of the week, calendar day, and holidaysChinaTime-series study (6 years)30751 (50%)N.A.Hospital recordsGAMChinaTime-series study (6 years)30751 (50%)N.A.Hospital recordsGAMChinaTime-series study (6 years)30751 (50%)N.A.Hospital recordsGAMChinaTime-series study (6 years)18316N.A.Hospital recordsGAMKoreaTime-stratified (6 years)18316N.A.Health insurance (9 store studyPerformant humidity, calendar day, and day of (he week 	Karagün et al. (2021) [25]	Turkey	Time-series study (6.5 years)	27549 (58%)	N.A.	Hospital records	Distributed lag nonlinear model	Day of the week and temperature	Monitoring stations
ChinaTime-series study (6 years)16891 (62%)N.A.Hospital recordsGAMTemperature, humidity, day of the week, calendar day, and holidaysChinaTime-series study (6 years)300751 (50%)N.A.Hospital recordsGAMTemperature, humidity, calendar day, and day of the weekKoreaTime-stratified cross-over study18316N.A.Health insurance logistic regressionCoditional Meteorological factors and national holidays	Wang et al. (2021)⁵ [26]	China	Time-series study (5 years)	29972 (51%)	N.A.	Hospital records	GAM	Temperature and humidity	Monitoring stations
ChinaTime-series study (6 years)300751 (50%)N.A.Hospital recordsGAMTemperature, humidity, calendar day, and day of the weekKoreaTime-stratified cross-over study18316N.A.Health insurance logistic regressionMeteorological factors and national holidays	Wang et al. (2021)⁵ [27]	China	Time-series study (6 years)	16891 (62%)	N.A.	Hospital records	GAM	Temperature, humidity, day of the week, calendar day, and holidays	Monitoring stations
Time-stratifiedTime-stratifiedKoreacross-over study18316N.A.Laims datalogistic regression(one year)	Zhang et al. (2021)⁵ [28]	China	Time-series study (6 years)	300751 (50%)	N.A.	Hospital records	GAM	Temperature, humidity, calendar day, and day of the week	Monitoring stations
	Park et al. (2021) [29]	Korea	Time-stratified cross-over study (one year)	18316	N.A.	Health insurance claims data	Conditional logistic regression	Meteorological factors and national holidays	N.A.

GAM, generalized additive model; ISSAC, the International Study of Asthma and Allergies in Childhood; N.A., not available. *Reference number of the study was specified in brackets. *Only range reported. *single-center studies.

Table 1. (Continued)

a

a	Weight		
Study	(%)		Odds ratio
Prevalent AD in cross-sectional studies			
Traffic-related air pollution			
Montnemery et al.	48.01		1.45 (1.25, 1.67)
Pesce et al.	30.43		1.29 (1.04, 1.61)
Total		♦	1.40 (1.24, 1.58)*
Heterogeneity: Tau ² = 0.0000; Chi ² = 0.76; <i>p</i> = 0.382; I ² = 0.0%		'	
PM2.5			
Tang et al.	69.96		1.63 (1.22, 2.16)
Huls et al.	8.32		3.93 (0.68, 22.71)
Total		\diamond	1.67 (1.26, 2.21)*
Heterogeneity: Tau ² = 0.0000; Chi ² = 0.95; <i>p</i> = 0.331; l ² = 0.0%		'	
PM10			
Tang et al.	77.35		0.82 (0.74, 1.00)
Huls et al.	22.65		1.81 (0.56, 5.76)
Total		$\langle \rangle$	0.98 (0.51, 1.88)
Heterogeneity: Tau ² = 0.1381; Chi ² = 1.77; <i>p</i> = 0.184; l ² = 43.4%			
NO ₂			
Tang et al.	57.7		0.90 (0.68, 1.11)
Huls et al.	35.43	- + =	1.18 (0.86, 1.60)
Total		\diamond	1.01 (0.78, 1.31)
Heterogeneity: Tau ² = 0.0156; Chi ² = 1.76; <i>p</i> = 0.185; I ² = 43.1%			
Incident AD in cohort studies			
PM2.5			
Huls et al.	84.68		2.22 (1.14, 4.31)
Lopez et al.	15.32		- 2.85 (0.57, 13.04)
Total			2.30 (1.25, 4.25)*
Heterogeneity: Tau ² = 0.0000; Chi ² = 0.08; <i>p</i> = 0.773; l ² = 0.0%		1	
NO ₂			
Huls et al.	77.49	- +	1.31 (1.03, 1.68)
Lopez et al.	22.51	- 	1.25 (0.78, 1.95)
Total		\Leftrightarrow	1.30 (1.04, 1.61)*
Heterogeneity: Tau ² = 0.0000; Chi ² = 0.03; <i>p</i> = 0.853; l ² = 0.0%		'	
	0.1	1 10	

Figure 2. The meta-analyses of the (a) long-term effects and short-term effects (exacerbations), in either (b) the single lag, or (c) the cumulative lag model, of outdoor air pollutants (per 10 μ g/m³ increment) on adult AD in adults. The black squares represent the effect estimates of the individual studies and the diamonds represent the summary effect estimates. AD, atopic dermatitis; PM2.5, particulate matter < 2.5 μ m in diameter; PM10, particulate matter < 10 μ m in diameter.

*p < 0.05; **p < 0.006; ***p < 0.007, based on the Bonferroni correction.

b

Air pollutant Excessive risk (%) PM2.5 Lag0 0.50 (0.10, 0.90) 0.20 (-0.20, 0.60) Lag1 0.20 (-0.10, 0.60) Lag2 Lag3 0.00 (-0.20, 0.20) Lag4 0.20 (-0.10, 0.50) -0.30 (-1.39, 0.80) Lag5 PM10 0.40 (0.20, 0.70)** Lag0 Lag1 0.30 (-0.10, 0.60) Lag2 0.30 (0.10, 0.50)** Lag3 0.20 (0.00, 0.40) Lag4 0.30 (0.00, 0.50) 0.10 (-0.10, 0.30) Lag5 Lag6 0.00 (-0.30, 0.20) Lag7 0.10 (-0.20, 0.40) SO₂ Lag0 2.94 (1.31, 4.71)** 1.21 (-0.20, 2.63) Lag1 Lag2 1.11 (0.40, 1.71)** 0.90 (0.40, 1.41) Lag3 1.01 (0.60, 1.31)** Lag4 Lag5 -0.10 (-1.49, 1.41) Lag6 -0.10 (-1.69, 1.51) Lag7 -0.40 (-4.21, 3.67) NO₂ 1.61 (0.00, 3.25) Lag0 1.11 (-0.80, 3.15) Lag1 0.30 (-0.50, 1.21) Lag2 Lag3 0.20 (-0.10, 0.60) Lag4 -0.10 (-0.70, 0.40) Lag5 -0.60 (-1.09, 0.00) -0.70 (-1.29, -0.10) Lag6 Lag7 -0.60 (-1.69, 0.60) 0, -0.10 (-1.39, 1.21) Lag0 Lag1 0.20 (-0.90, 1.21) Lag2 0.00 (-1.09, 1.11) Lag3 0.20 (-0.50, 0.90) 0.30 (0.20, 0.50)** Lag4 Lag5 0.40 (0.10, 0.70) Lag6 0.20 (-1.39, 1.92)

0

Figure 2. (Continued)

-5

Lag7

С

0.60 (0.40, 0.70)**

5

		Excessive risk (%)
PM2.5		
Lag0-1		1.01 (0.00, 2.02)
Lag0-2	-	0.60 (0.10, 1.01)
Lag0-3	-	0.70 (0.10, 1.31)
Lag0-4		0.50 (-0.40, 1.51)
Lag0-5	- - -	1.41 (-0.20, 3.05)
PM10		
Lag0-1	-	0.60 (0.10, 1.01)
Lag0-2	-	0.30 (0.10, 0.50)***
Lag0-3	=	0.80 (0.30, 1.21)***
Lag0-4	-	0.60 (0.20, 1.01)***
Lag0-5	-	0.80 (0.30, 1.31)***
Lag0-6	•	0.80 (0.70, 1.01)***
Lag0-7	-	0.90 (-0.10, 1.82)
SO ₂		
Lag0-1		2.33 (1.21, 3.56)***
Lag0-2		2.74 (0.50, 4.92)
Lag0-3		3.67 (0.50, 6.82)
Lag0-4		3.25 (-1.29, 8.11)
Lag0-5		2.74 (-1.78, 7.47)
Lag0-6		2.74 (0.60, 5.02)
Lag0-7	>	7.14 (-3.25, 18.53)
NO ₂		
Lag0-1		0.80 (-0.70, 2.33)
Lag0-2		-0.20 (-1.29, 1.01)
Lag0-3	_ e _	0.30 (-1.29, 1.82)
Lag0-4		-0.80 (-1.78, 0.20)
Lag0-5	_ #	0.20 (-1.88, 2.22)
Lag0-6	_	0.10 (-3.73, 4.08)
Lag0-7	#	0.20 (-4.59, 5.23)
0,		
Lag0-1		0.30 (-0.80, 1.41)
Lag0-2		0.50 (-1.19, 2.12)
Lag0-3	-#-	1.21 (0.40, 2.02)***
Lag0-4		1.11 (-0.10, 2.43)
Lag0-5	+	1.92 (1.31, 2.53)***
Lag0-6		2.02 (0.30, 3.77)
Lag0-7		2.22 (-0.10, 4.50)
	-5 0 5	

Potential effect modifiers

Potential effect modifiers regarding the influence of outdoor air pollutants on adult AD are summarized in **Table 2**. In addition, we noted in several studies that children and adolescents were more vulnerable to the short-term effects of air pollutants on AD exacerbations.^{24,26,28,29}

Table 2. Potential effect modifiers with regards to the influence of air pollutants on adult AD.

Factors	Characteristics of the vulnerable subpopulations	Reference number
Age	Older age	12, 21, 27, 28
Sex	Men	12, 17
Soscioeconomic status	Higher soscioeconomic status	23
Geographic area	Certain areas	11
Genetics	Low genetic prediposition to AD	13
Temperature	Higher temperature	22
Seasons	Warm and cold seasons	18, 23, 25, 28

AD, atopic dermatitis.

Stratification analyses

In terms of seasons, we observed no modifying effect regarding short-term effects of air pollutants (**Figure 3**). Owing to limited data, we did not undertake meta-analyses after stratification according to seasons regarding long-term effects of air pollutants, nor after stratification according to sex regarding long-term and short-term effects of air pollutants.

Risk of bias

In the 9 studies on long-term effects of air pollutants, 3 of them were recognized as having a serious risk (**Figure S3a**). In the 11 studies on short-term effects of air pollutants, 3 of them were recognized as having a serious risk (**Figure S3b**).

Sensitivity analyses

After we had excluded single-center studies, in the single lag model, the associations between AD exacerbations and PM10 at lag day 0 and 2 became non-significant whereas the association between AD exacerbations and SO_2 at lag day 0 was enhanced (**Figure S4a**). NO₂ exposure became negatively associated with AD exacerbations at lag day 2 and 6. In the cumulative lag model, the associations between SO₂ exposure and AD exacerbations were enhanced whereas NO₂ exposure

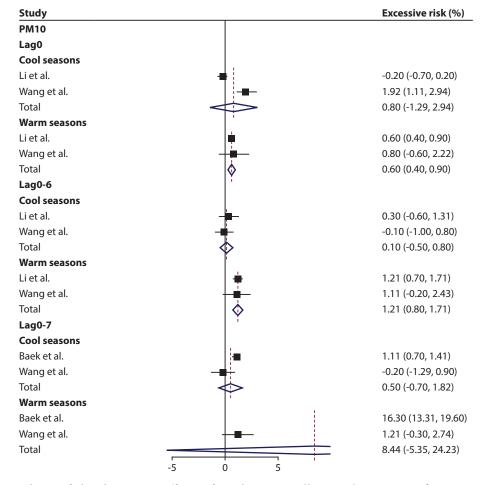
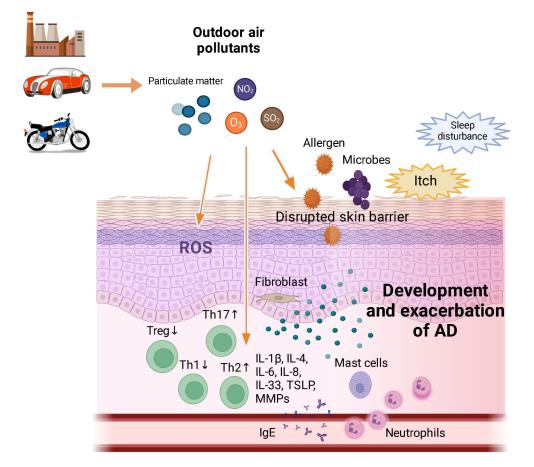


Figure 3. The meta-analyses of the short-term effects of outdoor air pollutants (per 10 μ g/m³ increment) on exacerbations of adult atopic dermatitis after stratification according to seasons. The black squares represent the effect estimates of the individual studies and the diamonds represent the summary effect estimates.

Study		Excessive risk (%)
SO,		
Lag0		
Cool seasons		
Li et al.		0.60 (-0.50, 1.61)
Wang et al.	>	8.98 (5.02, 13.09)
Total		4.50 (-3.44, 13.09)
Warm seasons	Ĩ	
Li et al.		1.21 (0.50, 2.02)
Wang et al.		5.97 (-0.60, 13.09)
Total		2.43 (-1.49, 6.40)
Lag0-6	1	
Cool seasons		
Li et al.		2.33 (0.10, 4.60)
Wang et al.	<∎	-6.39 (-11.40, 0.90)
Total		-1.59 (-9.70, 7.36)
Warm seasons	1	
Li et al.		3.87 (2.53, 5.13)
Wang et al.	<	6.82 (-11.40, 27.25
Total		3.87 (2.63, 5.13)
Lag0-7	· · ·	······································
Cool seasons		
Baek et al.		-1.00 (-2.47, 0.40)
Wang et al.	<	-6.85 (-11.84, 0.90)
Total		-3.05 (-8.33, 2.53)
Warm seasons		
Baek et al.	<u>_</u>	0.10 (-1.09, 1.21)
Wang et al.	<>	2.74 (-14.53, 23.61
Total		0.10 (-1.09, 1.31)
NO,	Ť	
Lag0		
Cool seasons		
Li et al.	<u>+</u>	1.92 (0.60, 3.15)
Wang et al.		3.46 (2.22, 4.71)
Total		2.74 (1.11, 4.29)
Warm seasons		
Li et al.	<u> </u>	2.53 (1.92, 3.25)
Wang et al.		2.22 (-0.10, 5.13)
Total		2.53 (1.92, 3.25)
Lag0-6	Ť	,
Cool seasons		
Li et al.		0.60 (-2.08, 3.25)
Wang et al.		0.10 (-3.15, 3.67)
Total		0.40 (-1.59, 2.53)
Warm seasons	·	
Li et al.		4.19 (2.74, 5.55)
Wang et al.		-0.80 (-6.01, 3.98)
Total		2.33 (-2.27, 7.14)
Lag0-7	i	2.55 (2.27, 7.11)
Cool seasons		
Baek et al.		-2.57 (-3.15, -1.98)
Wang et al.		-0.50 (-4.02, 2.74)
Total		-2.18 (-3.73, -0.70)
Warm seasons	· ·	2.10 (3.73, -0.70)
Baek et al.		-0.20 (-0.60, 0.20)
Wang et al.		-0.80 (-6.01, 5.23)
wany et dl.		-0.00 (-0.01, 3.23)
Total	Å.	-0.20 (-0.60, 0.20)

became negatively associated with AD exacerbation (**Figure S4b**). After excluding those studies with an overall high risk of bias, the results remained similar except for SO_2 exposure whose associations with AD exacerbations became significant at lag day 0-2, 0-3, 0-4, and 0-5 in the cumulative model (**Figure S5**).

Publication bias


Asymmetry in the funnel plot was found in most studies on short-term effects of air pollutants. The Begg's and Egger's test results were statistically significant in only a few of them (Table S2).

Discussion

This systematic review and meta-analysis have comprehensively summarized the effects of various outdoor air pollutants on AD in adults. We found that the exposure to these air pollutants had both short-term and long-term adverse effects, and it was associated with the incidence, prevalence, symptom severity, and exacerbation of AD. Furthermore, short-term effects emerge as early as the same day of exposure.

The pathogenesis of AD is complex. Impaired skin barrier function allows skin penetration of allergens and microbes such as Staphylococcus aureus ("outside-in"). Owing to inherent dysregulation of the immune system ("inside-out"), these stimuli overzealously activate immune cells, predominantly Th2 cells and mast cells.³³ Meanwhile, IgE produced by B cells and infiltrating neutrophils enter the skin tissue. Keratinocytes and fibroblasts are also activated to promote inflammation and epidermal proliferation. Outdoor air pollutants could disrupt the skin barrier,³⁴⁻³⁶ increase reactive oxygen species (ROS) production,^{35,37} alter the balance between T helper cells,³⁸ facilitate skin infiltration by neutrophils,³⁹ increase IgE production,³⁹ activate keratinocytes, fibroblasts, and mast cells,^{35,39} and promote the secretion of pro-inflammatory cytokines, chemokines, and matrix metalloproteinases (MMPs) (**Figure 4**).³⁵ The end result is to promote the generation and propagation of allergy in the skin.^{35,40,41}

Outdoor air pollution is known to be associated with allergic diseases such as allergic rhinitis and asthma in children from several earlier meta-analyses.^{5,42} The associations with childhood AD were also reported in some studies, despite weaker evidence and inconsistent findings.⁴ A recent meta-analysis of 5 European birth cohorts revealed no association between outdoor air pollutants and childhood prevalent AD.⁶ The evidence on the associations between these air pollutants and adult AD has not been systematically reviewed. Our review comprehensively showed the short-term and long-term negative impacts of these air pollutants on adult AD in several aspects,

Figure 4. The adverse effects of air pollutants on adult atopic dermatitis (AD) and underlying mechanisms. IL, interleukin; ROS, reactive oxygen species; TSLP, thymic stromal lymphopoietin. Figure created using Biorender (https://biorender.com/).

including its incidence, prevalence, symptoms and exacerbation. The discrepancy between our results (some based on Asian studies) and the null findings in European pediatric birth cohorts⁶ may be due to the geographic difference (e.g., disparate racial gene-environment interactions,^{14,43} background air pollutant levels, etc). Nevertheless, interventional studies are required to verify the contributory role of these air pollutants in adult AD.

In terms of long-term effects of air pollutants on AD, our meta-analysis showed that traffic-related air pollution, PM2.5, and NO₂ were associated with either the prevalence or the incidence of AD in adults. Notably, PM2.5 was associated with a two-fold increased odds for incident AD. In addition, Seo et al. conducted a geographic information system (GIS) analysis which showed that PM10 concentrations were ecologically associated with the prevalence of AD at the subdistrict level of Seoul, despite the existence of geographical variations.¹² We previously also collected urine samples from a small group of adult AD patients and found higher levels of exposure to certain polycyclic aromatic hydrocarbons based on urine metabolites, when compared with healthy controls.¹⁶ In line with these findings, Park et al. used a healthcare insurance database (consisting of 209,168 Korean subjects) to show that incident AD is associated with the exposure to PM2.5, PM10, SO₂, NO₂, and CO based on a Cox proportional hazard model.¹⁷ Taken together, long-term exposure to outdoor air pollutants may well contribute to the development of AD in adults. Reducing exposure to these air pollutants is a potential strategy to prevent the development of AD in the at-risk population.

In terms of short-term effects of air pollutants on AD, our meta-analysis of time-series studies demonstrated that the exposure to some air pollutants was associated with increased outpatient and/or emergency department visits for AD in the single lag model, especially at lag day 0. In addition, the effect of single air pollutants remained significant even after adjusting for the exposure to other air pollutants.^{19,20,23,28} These findings implied that the short-term effect of outdoor air pollutants on exacerbations of AD symptoms was immediate and shared by several air pollutants. This might be explained by an underlying common and immediate pathogenic mechanism, e.g. an increased oxidative stress.³⁷ In summary, outdoor air pollutants likely contribute in a collective way to the exacerbation of AD symptoms within a relatively short time period. More studies are required to confirm such a possibility and clinical benefits of minimizing exposure to these air pollutants in the management of AD exacerbations.

Effects of air pollutants may be modified by several factors. Both the elderly and children are likely more vulnerable to the effect of outdoor air pollutants, a finding which is compatible with previous reports.^{4,44} Children are more vulnerable probably due to their immature immune and respiratory systems, more outdoor activities, and a relatively small volume of distribution.⁴ On the other hand, impaired respiratory function and pre-existing chronic diseases may predispose the elderly to the adverse effects of air pollutants.⁴⁴ Sex was found to be a potential modifying

factor and the association between air pollutants and adult AD appeared more prominent in men. This finding is in contradiction with previous reports on asthma patients, in which women seemed more vulnerable to the effect of air pollution. However, such gender role may vary according to different life stages and hormonal status, making a firm conclusion difficult to draw.⁴⁵ Genetics also plays a role. Huls et al. found that the associations with air pollutants among the elderly tend to be stronger in subjects carrying fewer risk alleles for AD.¹⁴ This finding implied that genetic and environmental factors probably independently contribute to the development of adult AD.

The strength of the present study is that it is the first systematic review and meta-analysis on the impact of outdoor air pollutants on adult AD. We have comprehensively analyzed effects regarding a variety of air pollutants on several domains relevant to AD, including its incidence, prevalence, severity, and exacerbation. Furthermore, reviews on the effect of air pollutants with respect to allergy in adults are scarce. Our review is expected to fill the knowledge gap.

Our review has some limitations. First, the study population, measurement of exposure to air pollutants, and outcome ascertainment methods differed considerably across studies. Such heterogeneity limited the strength in interpreting the results. Second, underrepresentation, e.g. ethnic groups other than Asians regarding short-term effects of air pollutants, would raise concerns when trying to generalize our findings. Third, the publication bias was significant and may undermine our conclusions. Fourth, smoking and/or second-hand smoke were not adjusted for in most of these studies, despite their importance as a source of ambient indoor air pollution and their reported association with the development of AD.⁴⁶ Last, we only searched two large databases: EMBASE and MEDLINE. We might not identify all relevant studies. Some of the meta-analyses included few studies and the study heterogeneity was difficult to estimate.⁴⁷ Despite all these limitations, our review can still provide an updated and valuable overview of the relationship between outdoor air pollutants and adult AD.

Conclusion

Our systematic review showed that the exposure of outdoor air pollutants has both short-term and long-term adverse effects on adult AD with regards to its development and symptom severity. The short-term effect appeared as early as within the same day of exposure. Study heterogeneity and publication bias should be taken into account when interpreting the results. Interventional studies are needed to verify the beneficial effects of reducing exposure to these air pollutants in adult AD patients.

Acknowledgements

None.

Conflict of interests

The authors declare no conflict of interest.

Funding

This study was supported by a grant from Taichung Veterans General Hospital (TCVGH-1113802D), Taichung, Taiwan, Republic of China, and a grant from Taichung Veterans General Hospital and National Health Research Institutes (TCVGH-NHRI111003). The funders had no role in the design and conduct of the study.

Authors' contributions

- All authors made substantive intellectual contributions to the present study and approved the final manuscript.
- Y-YH, Y-HC, and K-TT performed the literature search and retrieved relevant articles.
- Y-YH, W-TH, and K-TT appraised the selected articles.
- Y-YH, Y-HC, and K-TT drafted the manuscript.

Data availability

The data that support the findings of this study are available upon request from the corresponding author.

References

- Ring J, Zink A, Arents BWM, Seitz IA, Mensing U, Schielein MC, et al. Atopic eczema: burden of disease and individual suffering - results from a large EU study in adults. J Eur Acad Dermatol Venereol. 2019;33: 1331-40.
- Stefanovic N, Flohr C, Irvine AD. The exposome in atopic dermatitis. Allergy. 2020;75:63-74.
- Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. The Lancet. 2020;396:345-60.
- Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70:245-56.
- Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ Int. 2017;100:1-31.
- Fuertes E, Sunyer J, Gehring U, Porta D, Forastiere F, Cesaroni G, et al. Associations between air pollution and pediatric eczema, rhinoconjunctivitis and asthma: A meta-analysis of European birth cohorts. Environ Int. 2020;136:105474.
- Ronmark EP, Ekerljung L, Lotvall J, Wennergren G, Ronmark E, Toren K, et al. Eczema among adults: prevalence, risk factors and relation to airway diseases. Results from a large-scale population survey in Sweden. Br J Dermatol. 2012;166:1301-8.
- Bieber T, D'Erme AM, Akdis CA, Traidl-Hoffmann C, Lauener R, Schappi G, et al. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J Allergy Clin Immunol. 2017;139:S58-S64.
- Mortz CG, Andersen KE, Dellgren C, Barington T, Bindslev-Jensen C. Atopic dermatitis from adolescence to adulthood in the TOACS cohort: prevalence, persistence and comorbidities. Allergy. 2015;70:836-45.
- Montnemery P, Nihlen U, Goran Lofdahl C, Nyberg P, Svensson A. Prevalence of self-reported eczema in relation to living environment, socio-economic status and respiratory symptoms assessed in a questionnaire study. BMC Dermatol. 2003;3:4.
- 11. Pesce G, Marcon A, Carosso A, Antonicelli L, Cazzoletti L, Ferrari M, et al. Adult eczema in Italy: prevalence and associations with environmental factors. J Eur Acad Dermatol Venereol. 2015;29:1180-7.
- Seo S, Kim D, Min S, Paul C, Yoo Y, Choung JT. GIS-based Association Between PM10 and Allergic Diseases in Seoul: Implications for Health and Environmental Policy. Allergy Asthma Immunol Res. 2016;8:32-40.
- Tang KT, Ku KC, Chen DY, Lin CH, Tsuang BJ, Chen YH. Adult atopic dermatitis and exposure to air pollutants-a nationwide population-based study. Ann Allergy Asthma Immunol. 2017;118:351-5.

- Huls A, Abramson MJ, Sugiri D, Fuks K, Kramer U, Krutmann J, et al. Nonatopic eczema in elderly women: Effect of air pollution and genes. J Allergy Clin Immunol. 2019;143:378-85 e9.
- Patella V, Florio G, Palmieri M, Bousquet J, Tonacci A, Giuliano A, et al. Atopic dermatitis severity during exposure to air pollutants and weather changes with an Artificial Neural Network (ANN) analysis. Pediatr Allergy Immunol. 2020;31:938-45.
- Tang KT, Chen PA, Lee MR, Lee MF, Chen YH. The relationship between exposure to polycyclic aromatic hydrocarbons and adult atopic dermatitis. Asian Pac J Allergy Immunol. 2020.
- 17. Park SK, Kim JS, Seo HM. Exposure to air pollution and incidence of atopic dermatitis in the general population: A national population-based retrospective cohort study. J Am Acad Dermatol. 2021.
- Lopez DJ, Lodge CJ, Bui DS, Waidyatillake NT, Su JC, Perret JL, et al. Association between ambient air pollution and development and persistence of atopic and non-atopic eczema in a cohort of adults. Allergy. 2021;76:2524-34.
- Li Q, Yang Y, Chen R, Kan H, Song W, Tan J, et al. Ambient Air Pollution, Meteorological Factors and Outpatient Visits for Eczema in Shanghai, China: A Time-Series Analysis. Int J Environ Res Public Health. 2016;13.
- 20. Li A, Fan L, Xie L, Ren Y, Li L. Associations between air pollution, climate factors and outpatient visits for eczema in West China Hospital, Chengdu, south-western China: a time series analysis. J Eur Acad Dermatol Venereol. 2018;32:486-94.
- Nakhjirgan P, Mahmoodi M, Kashani H, Firooz A, Nabizadeh R, Kermani M, et al. Air pollution and exacerbation of skin itching and sleep disturbance in Iranian atopic dermatitis patients. J Environ Health Sci Eng. 2019;17:811-6.
- 22. Wang XW, Tian YH, Cao YY, Song J, Li M, Wu Y, et al. Association between Fine Particulate Air Pollution and Outpatient Visits for Eczema in Beijing, China: A Time-series Analysis. Biomed Environ Sci. 2019;32:624-7.
- 23. Guo Q, Xiong X, Liang F, Tian L, Liu W, Wang Z, et al. The interactive effects between air pollution and meteorological factors on the hospital outpatient visits for atopic dermatilis in Beijing, China: a time-series analysis. J Eur Acad Dermatol Venereol. 2019;33:2362-70.
- Baek JO, Cho J, Roh JY. Associations between ambient air pollution and medical care visits for atopic dermatitis. Environ Res. 2021;195:110153.
- Karagun E, Yildiz P, Cangur S. Effects of climate and air pollution factors on outpatient visits for eczema: a time series analysis. Arch Dermatol Res. 2021;313:49-55.
- Wang HL, Sun J, Qian ZM, Gong YQ, Zhong JB, Yang RD, et al. Association between air pollution and atopic dermatitis in Guangzhou, China: modification by age and season. Br J Dermatol. 2021;184:1068-76.
- 27. Wang W, Zhang W, Zhao J, Li H, Wu J, Deng F, et al. Short-Term Exposure to Ambient Air Pollution and Increased Emergency Room Visits for Skin Diseases in Beijing, China. Toxics. 2021;9.
- Zhang L, Jing D, Lu Q, Shen S. NO2 exposure increases eczema outpatient visits in Guangzhou, China: an indication for hospital management. BMC Public Health. 2021;21:506.
- 29. Park S, Ha KH, Kim TG, Kim HC, Kim C, Oh SH. Air pollution and risk of hospital outpatient visits for eczematous skin disorders in metropolitan cities of South Korea. Br J Dermatol. 2021;185:641-4.
- Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88.
- 32. Lu Y, Zeger SL. On the equivalence of case-crossover and time series methods in environmental epidemiology. Biostatistics. 2007;8:337-44.
- Huet F, Severino-Freire M, Cheret J, Gouin O, Praneuf J, Pierre O, et al. Reconstructed human epidermis for in vitro studies on atopic dermatitis: A review. J Dermatol Sci. 2018;89:213-8.
- 34. Hieda DS, Anastacio da Costa Carvalho L, Vaz de Mello B, Oliveira EA, Romano de Assis S, Wu J, et al. Air Particulate Matter Induces Skin Barrier Dysfunction and Water Transport Alteration on a Reconstructed Human Epidermis Model. J Invest Dermatol. 2020;140:2343-52 e3.
- 35. Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, et al. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol. 2020;17:35.

- 36. Jin SP, Li Z, Choi EK, Lee S, Kim YK, Seo EY, et al. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci. 2018.
- 37. Krutmann J, Liu W, Li L, Pan X, Crawford M, Sore G, et al. Pollution and skin: from epidemiological and mechanistic studies to clinical implications. J Dermatol Sci. 2014;76:163-8.
- Prunicki M, Kelsey R, Lee J, Zhou X, Smith E, Haddad F, et al. The impact of prescribed fire versus wildfire on the immune and cardiovascular systems of children. Allergy. 2019;74:1989-91.
- Sadakane K, Ichinose T, Takano H, Yanagisawa R, Inoue K, Kawazato H, et al. Organic chemicals in diesel exhaust particles enhance picryl chloride-induced atopic dermatitis in NC/Nga mice. Int Arch Allergy Immunol. 2013;162:7-15.
- Celebi Sozener Z, Cevhertas L, Nadeau K, Akdis M, Akdis CA. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol. 2020;145:1517-28.
- Darlenski R, Kozyrskyj AL, Fluhr JW, Caraballo L. Association between barrier impairment and skin microbiota in atopic dermatitis from a global perspective: Unmet needs and open questions. J Allergy Clin Immunol. 2021;148:1387-93.

Supplemental Materials

Table S1. The search strategy.

- 42. Zou QY, Shen Y, Ke X, Hong SL, Kang HY. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: A meta-analysis. Int J Pediatr Otorhinolaryngol. 2018;112:82-90.
- 43. Huls A, Klumper C, MacIntyre EA, Brauer M, Melen E, Bauer M, et al. Atopic dermatitis: Interaction between genetic variants of GSTP1, TNF, TLR2, and TLR4 and air pollution in early life. Pediatr Allergy Immunol. 2018;29:596-605.
- Simoni M, Baldacci S, Maio S, Cerrai S, Sarno G, Viegi G. Adverse effects of outdoor pollution in the elderly. J Thorac Dis. 2015;7:34-45.
- 45. Clougherty JE. A growing role for gender analysis in air pollution epidemiology. Environ Health Perspect. 2010;118:167-76.
- 46. Kantor R, Kim A, Thyssen JP, Silverberg JI. Association of atopic dermatitis with smoking: A systematic review and meta-analysis. J Am Acad Dermatol. 2016;75:1119-25 e1.
- Seide SE, Röver C, Friede T. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies. BMC Medical Research Methodology. 2019;19.

PubMe	ed
#1	Air Pollution[Mesh] OR Pollut*[tiab] OR Traffic-Related Pollution[Mesh] OR Traffic*[tiab] OR Vehicle Emissions[Mesh] OR Vehic*[tiab] OR Emis- sion*[tiab] OR Exhaust*[tiab] OR Particulate Matter[Mesh] OR Particulate*[tiab] OR Particle*[tiab] OR Nitrogen Dioxide[Mesh] OR Nitro*[tiab] OR Sulfur dioxide[Mesh] OR Sulfur*[tiab] OR Sulphur*[tiab] OR Ozone[Mesh] OR Ozon*[tiab] OR Carbon Monoxide[Mesh] OR Carbon*[tiab]
#2	Dermatitis, Atopic[Mesh] OR Atop*[tiab] OR eczema*[tiab]
#3	#1 AND #2
EMBA	SE
#1	'air pollution'/exp OR 'pollut*':ab,ti,kw OR 'traffic pollution'/exp OR 'traffic*':ab,ti,kw OR 'exhaust*':ab,ti,kw OR 'vehic*':ab,ti,kw OR 'emission*':ab,ti,kw OR 'particulate matter'/exp OR 'particulate*':ab,ti,kw OR 'particle*':ab,ti,kw OR 'introgen dioxide'/exp OR 'nitro*':ab,ti,kw OR 'sulfur dioxide'/exp OR 'sulfur*':ab,ti,kw OR 'sulfur*':ab,ti,kw OR 'ozone'/exp OR 'ozon*':ab,ti,kw OR 'carbon monoxide'/exp OR 'carbon*':ab,ti,kw
#2	ʿatopic dermatitis'/exp OR ʿatop*':ab,ti,kw OR ʿeczema*':ab,ti,kw
#3	#1 AND #2

Table S2. The publication bias of selected studies.

Pollutant	Funnel plot asymmetry	Egger's p	Begg's p
Short-term effect	ts (single lag model)	
PM2.5			
Lag0	Yes	0.895	0.497
Lag1	Yes	0.420	0.497
Lag2	Yes	0.149	0.042
Lag3	Yes	0.716	0.497
Lag4	No	0.833	0602
Lag5	Yes	0.520	0.117

Pollutant	Funnel plot asymmetry	Egger's p	Begg's p
Short-term effect	s (single lag model) (Continued)	
PM10			
Lag0	Yes	0.012	0.652
Lag1	Yes	0.064	0.453
Lag2	Yes	0.027	0.099
Lag3	Yes	0.132	0.652
Lag4	Yes	0.193	0.051
Lag5	No	0.705	0.652
Lag6	Yes	0.820	0.497
Lag7	Yes	0.483	0.602

Table S2. (Continued)

Pollutant	Funnel plot asymmetry	Egger's p	Begg's p		Pollutant	Pollutant Funnel plot asymmetry	
Short-term effect	ts (single lag model) (Continued)			Short-term effec	Short-term effects (cumulative lag n	Short-term effects (cumulative lag model)
80 ₂					PM2.5	PM2.5	PM2.5
Lag0	Yes	0.900	0.652		Lag0-1	Lag0-1 Yes	Lag0-1 Yes 0.409
Lag1	Yes	0.154	0.293		Lag0-2	Lag0-2 Yes	Lag0-2 Yes 0.249
Lag2	Yes	0.353	0.293		Lag0-3	Lag0-3 Yes	Lag0-3 Yes 0.149
Lag3	No	0.971	0.652		Lag0-4	Lag0-4 Yes	Lag0-4 Yes 0.674
Lag4	Yes	0.283	0.176		Lag0-5	Lag0-5 Yes	Lag0-5 Yes 0.084
Lag5	Yes	0.701	0.652		PM10	PM10	PM10
Lag6	No	0.796	1.000		Lag0-1	Lag0-1 Yes	Lag0-1 Yes 0.028
Lag7	Yes	0.355	0.602		Lag0-2	Lag0-2 Yes	Lag0-2 Yes 0.266
NO ₂	1				Lag0-3	Lag0-3 Yes	Lag0-3 Yes 0.375
Lag0	Yes	0.323	0.453		Lag0-4	Lag0-4 Yes	Lag0-4 Yes 0.995
Lag1	Yes	0.232	0.881		Lag0-5	Lag0-5 Yes	Lag0-5 Yes 0.753
Lag2	Yes	0.411	0.881		Lag0-6	Lag0-6 No	Lag0-6 No 0.257
Lag3	No	0.721	0.652		Lag0-7	Lag0-7 Yes	Lag0-7 Yes 0.389
Lag4	Yes	0.763	0.573		SO ₂	SO ₂	SO ₂
Lag5	No	0.583	0.851		Lag0-1	Lag0-1 Yes	Lag0-1 Yes 0.611
Lag6	Yes	0.273	0.174		Lag0-2	Lag0-2 No	Lag0-2 No 0.720
Lag7	Yes	0.629	0.602		Lag0-3	Lag0-3 Yes	Lag0-3 Yes 0.640
O ₃	1		1		Lag0-4	Lag0-4 Yes	Lag0-4 Yes 0.470
Lag0	Yes	0.490	0.117		Lag0-5	Lag0-5 Yes	Lag0-5 Yes 0.629
Lag1	Yes	0.383	0.117	l	Lag0-6	Lag0-6 Yes	Lag0-6 Yes 0.613
Lag2	Yes	0.499	0.117		Lag0-7	Lag0-7 Yes	Lag0-7 Yes 0.292
Lag3	Yes	0.389	0.602		NO ₂	NO2	NO ₂
Lag4	No	0.902	0.602		Lag0-1	Lag0-1 Yes	Lag0-1 Yes 0.061
Lag5	No	0.125	0.117		Lag0-2	Lag0-2 Yes	Lag0-2 Yes 0.132
	I				Lag0-3	Lag0-3 Yes	Lag0-3 Yes 0.168
					Lag0-4	Lag0-4 Yes	Lag0-4 Yes 0.522
					Lag0-5	Lag0-5 Yes	Lag0-5 Yes 0.068
					Lag0-6	Lag0-6 Yes	Lag0-6 Yes 0.350
					Lag0-7	Lag0-7 Yes	Lag0-7 Yes 0.045
					O ₃	O ₃	0,
					Lag0-1		

AD, atopic dermatitis.

Yes

Yes

Yes

Yes

0.099

0.043 0.034

0.056

0.117 0.042

0.117

0.117

Lag0-2

Lag0-3

Lag0-4

Lag0-5

Air pollution and adult atopic dermatitis

(a)

Lag0 Wang et al. Duo et al. Park et al. Nang et al. Total Hetarogeneity: Tau'=0.0001; Clu'= 29.14 p=0.000; 1'=89.7% Lag1	34.04 30.39 23.31 12.37	0.30 (0.30, 0.30) 0.30 (0.10, 0.60) -0.10 (.090, 0.10) 2.63 (1.71, 3.67) 0.50 (0.10, 0.90)
Duo et al. Park et al. Wang et al. Total Heurogeneity: Tou [*] =0.0001; Chi [*] = 29.14 p=0.000; 1 [*] =89.7%	30.39 23.21 12.37	0.30 (0.10, 0.60) -0.10 (-0.90, 0.10) 2.63 (1.71, 3.67)
Park et al. Nang et al. Total Hearogeneity: Tou '=0.0001; Chi '= 29.14 μ=0.000; 1'=89.7%	23.21	-0.10 (-0.90, 0.10) 2.63 (1.71, 3.67)
Vang et al. 'otal Heterogeneity: Tou ['] =0.0001; Chi ['] = 29.14 p=0.000; 1 ['] =89.7%	12.37	-0.10 (-0.90, 0.10) 2.63 (1.71, 3.67)
'ang et al. 'otal Heterogeneity: Tou ['] =0.0001; Chi ['] = 29.14 p=0.000; 1 ['] =89.7%	12.37	2.63 (1.71, 3.67)
otal Heterogeneity: Tou ['] =0.0001; Citi ['] = 29.14 p=0.000; 1 ['] =89.7%		
Heterogeneity: Tou =0.0001; Cht = 29.14 p=0.000; 1 = 89.7%		
agl		
Vang et al.	40.57	-0.10 (-0.10, 0.00)
uo et al.	35.1	0.10 (-0.20, 0.30)
ark et al.	11.27	-0.40 (-1.49, 0.70)
Vang et al.	13.06	2,02 (1,01, 3,05)
otal		0.20(-0.20, 0.60)
Heterogeneity: Tou'=0.0000; Chi'= 17.04 p=0.001; I'=82.4%		
ag2		
Wang et al.	44.61	 0.00 (0.00, 0.00)
Duo et al.	34.35	0.00 (-0.30, 0.30)
Park et al.	11.88	0.90 (0.10, 1.82)
Wang et al.	9.16	1 21 (0 20, 2 22)
Total		0.20 (-0.10, 0.60)
Heterogeneity: Tou'=0.0000; Chi'= 10.85 p=0.013; 1'=72.3%		
ag)		
Ago Vang et al.	60.45	0.00 (0.00, 0.00)
	28.23	
iuo et al.		0.00(-0.30, 0.30)
ark et al.	7.36	-0.40 (-1.09, 0.30)
Vang et al.	3.95	1.01 (0.00, 2.02)
Total		O.00 (-0.20, 0.20)
Heterogeneity: Tou =0.0000; Chi = 5.16 p=0.160; I =41.9%		
agi		
Duo et al.	77.07	0.20 (-0.20, 0.50)
Park et al.	16.17	0.40 (-0.30, 1.11)
Nang et al.	6.77	0.00(-0.50, 1.61)
Total		0 20 (-0.10, 0.50)
Heterogeneity: Tou'=0.0000; Chi'= 0.34 p=0.844; I'=0.0%		+34 (414) 434)
ag5		
iuo et al.	40.27	0.20 (-0.10, 0.50)
nuo et al. Park et al.	29.38	-1.69 (-2.76, -0.60)
		-1.09 (-2.(0,-0.00)
N'ang et al.	30.35	0.20(-0.80, 1.31)
Total		-0.30 (-1.39, 0.80)
Heurogeneity: Tau =0.0001; Chi =11.4 p=0.003; I =82.5%		

Figure S1. The meta-analyses of the short-term effects in the single lag model, of (a) PM2.5, (b) PM10, (c) SO_2 , (d) NO_2 , and (e) O_3 exposure (per 10 µg/m³ increment) on exacerbations of atopic dermatitis in adults. The black squares represent the effect estimates of the individual studies and the diamonds represent the summary effect estimates.


 $^{\star}p < 0.006$ based on the Bonferroni correction.

 $\hat{PM2.5},$ particulate matter < 2.5 μm in diameter; PM10, particulate matter < 10 μm in diameter.

(b)

eg0 et al. et al. et al. et al. et al. et al. et al. gl et al. gl et al. et al.	14.67 17.64 14.37 15.82 14.66 18.29 4.56 15.84 16.72 16.38 15.57 15.84 10.94	0.40 (0.2 0.30 (0.3 0.30 (0.3 0.20 (0.0 0.20 (0.0 0.00 (0.0 0.20 (0.0 0.00 (0.0 0.20 (0.0 0.00 (0.0 0.00 (0.0 0.00 (0.0 0.00 (0.0 0.00 (0.0 0.00 (0.0 0.00 (0.0 0.00 (0.0)	0.0.40 0.0.50 0.0.50 0.0.50 1.2.74 0.0.50 0.0.50
ek et al. margin et al. so et al. et al. et al. tal farrogeneity: Toxi ² =0.0000; Chi ² =70.31 p=0.000; T ² =91.5% et al. et al. et al. et al. set al. set al. set al. set al. set al.	17.64 14.37 15.82 14.66 18.29 4.56 15.84 16.72 16.38 15.57 15.54	0 30 (03 0 10 (02 0 30 (02 0 20 (00 0 00 (01 0 30 (01 0 30 (01 0 30 (01 0 30 (01	0.0.40 0.0.50 0.0.50 0.0.50 1.2.74 0.0.50 0.0.50
ragin et al. 20 et al. et al. et al. fit et al. fair openeity: Tau ¹ =0.0000; Chi ¹ = 70.31 p=0.000; I ¹ =91.374 fair openeity: Tau ¹ =0.0000; Chi ¹ = 70.31 p=0.000; I ¹ =91.374 et al. et al. et al. et al. et al. et al. et al.	14.37 15.82 14.66 18.29 4.56 15.84 16.72 16.38 15.57 15.54	0.10 (-0. 0.30 (0.2 0.20 (0.0 0.00 (0.0 1.92 (1.2 0.30 (0.1 0.30 (0.1 -0.40 (-0	10, 0, 40 0, 0, 50 0, 0, 50 0, 0, 10 1, 2, 74 0, 0, 50 0, 0, 50
20 et al. et al. kt et al. sal fatogeneity: Tax'=0.0000; Cht'= 70.31 p=0.000; I'=91.3% et al. et al. et al. et al. so et al. 20 et al.	15.82 14.66 18.29 4.56 15.84 16.72 16.38 15.57 15.54	0 30 (0 2 0 20 (0 0 0 00 (0 0 1,92 (1 2 0 30 (0 1 0 30 (0 1 0 30 (0 1 0 30 (0 1	0.050 0.050 0.010 1.274 0.050
ek et al. lang et al. fal leter ogeneity: Tau ² =0.0000; Chi ² = 70.31 p=0.000; I ² =91.375 et al. et al.	14.66 18.29 4.56 15.84 16.72 16.38 15.57 15.54		0,0.50
ing et al. fal far ogeneity: Tau ² =0.0000; Cht ² = 70.31 p=0.000; I ² =91.5% eg1 et al. et et al. sit et al. so et al. et al.	4.38 15.84 16.72 16.38 15.57 15.84	0.30 (0.1	0.0.50
eaf Mentrogeneity: Tani [*] =0.0000; Chi [*] = 70.31 p=0.000; T [*] =91.5% et al. et al. et et al. ragin et al. so et al.	15.84 16.72 16.38 15.57 15.84	0.30 (0.1	0.0.50
ugl et al. et agine et al. 20 et al.	16.72 16.38 15.57 15.84	0.30 (0.1	0.0.50
ugl et al. et agine et al. 20 et al.	16.72 16.38 15.57 15.84	-0.40(-0	
etal. ekcetal. ragionetal. 20 etal.	16.72 16.38 15.57 15.84	-0.40(-0	
ek et al. ragile et al. so et al.	16.72 16.38 15.57 15.84	-0.40(-0	
eragiin et al. 20 et al.	15.57 15.84	0.20(0.0	
so et al.	15.57 15.84	01020	0 0 30
45.5	15.84		20.03
and a start of the second s		0.30 (0.1	0.0.50
	4.4.2.4	- 0.30 (0.1 0.49 (-0.)	20,0.9
ang et al.	8.71	1.61(1.0	1,2.43
eal Merogeneity: Tau ¹ =0.0000; Chi ¹ = 54.65 p=0.000; I ¹ =92.9%		O 30 (-0.)	10,0.6
		_	
#2		-	
et al.	16.44	0.20 (0.0	0.0.40
ek et al.	20.16 19.04	0.10(0.0	2010
iragún et al.	16.33	2	10.03
ao et al. et al.	16.44	1	0.04
er al. riz et al.	6.39	T	
ang et al.	5.2	121/05	0.10
4		121(05 030(01	0.030
cal leterogeneity: Tau'=0.0000; Chi'= \$2.25 p=0.000; I'=\$1.4%		-	
(g)			
et al. ek et al.	15.73 20.71	0.20 (0.0	0.0.50
	20.71	0 10 /0.0	0.030
stagtin et al.	19.82	0.10(-0. 0.00(-0. 0.00(-0.	10.0.2
so et al.	15.58	10.00 (-0.1)	20,0.2
et al.	15.7	0.00(-0.	10, 0.2
rix et al.	9.14	0.80 (0.4 1.01 (0.1 0.20 (0.0	912
ang et al.	3.32	101(0.1	0.1.71
est ^r leterogeneity: Tau ¹ =0.0000; Chi ¹ = 21.27 p=0.002; I ¹ =71.85%		· · · · · · · · · · · · · · · · · · ·	0,0.50
184			
et al.	15.16	 0.20 (0.0 	0.040
ek et al.	18.16	0 10 (0.0	0.030
tragin et al.	16.98	0.10(-0.	10.0.2
ao et al.	15.35	0.20 (0.0	0.0.40
et al.	16.23	0.00 (-0.	20, 0,1
ek et al.	13.11	0.50 (0.0	0,1.21
ang et al.	5.01	0.50 (0.0	0,13
cui leterogeneity: Tau ² =0.0000; Chi ² = 32.35 p=0.000; I ² =31.5%		O.20 (0.1	0,0.40
g5		-	
et al.	17.18	P 0.20 (0.0	
ek et al. Fagile et al.	23.97 17.19	0.00(-0.030(0.0	0.04
rague et al.	18.71	0.30 (0.1	
et al.	15.1	0.00(-0.)	10.02
ric et al.	432	-0.40 (-1	
ang et al.	3.32	010/-0/	50.00
		0.10 (0.0	0.0.30
tal laterogeneity: Tau ¹ =0.0001; Chi ¹ =15.09 p=0.020; I ¹ =60.2%			
ig6			
et al.	25.64	0.20 (0.0	
ek et al.	36.12	-0.10(-0	
et al.	26.15	0.10(-0.	
nic et al.	12.09	-0.30(-0	70.0
tal leterogeneity: Tau ¹ =0.0000; Chi ¹ =7.04 p=0.071; I ¹ =37.4%		• 0.00(0)	10,02
12 ⁷ 445 秋 41	41.99	A 24 (4 A	0.04
enc et al. et al.	41.88 34.42	0.30 (0.2	20.0
स.स. १९ स.च.	23.7	0.00 (-0.1	10.04
	and if	0.10 (-0.10)	20.04
esi Merogeneity: Tau ¹ =0.0000; Chi ¹ =10.07 p=0.007; I ¹ =50.1%			
- *		,	

(c)

udy	Weight (%)		Excessive risk (5
ng0 .			
ietal.	18.42	1 - 1 -	1.01 (0.40, 1.51)
iek et al.	18.58		4.29 (3.87, 4.81)
aragûn et al.	10.19		2.63 (-0.90, 6.40)
et al.	17.78 14.95		1.01 (0.00, 1.92)
et al. rk et al.	8		3.05 (1.01, 5.13)
ang et al.	12.09		4.92 (0.30, 9.75) 6.08 (3.15, 9.20)
tal	12.07		
Vaterogeneity: Tau ¹ =0.0004; Clu ¹ = 98.32 p=0.000; 1 ¹ =93.9%			2.94 (1.31, 4.71)
gl			
et al.	18.04		0.90 (0.30, 1.41)
ek et al.	18.18	• 17	-1.69 (-2.08, -1.1
ragin et al.	11.49		1.21 (-1.29, 3.87
o et al.	17.46		0.40(-0.20, 1.51
et al.	16.6		1.21 (0.10, 2.33)
rk et al.	7.92	T	5.23 (1.41, 9.31)
ang et al.	10.31		5.23 (2.02, 8.11)
ang et an.	100.04		1.21 (-0.20, 2.63
leterogeneity: Tau ² =0.0003; Cld ² = 84 87 p=0.000; 1 ² =92 9%			1.21 (10.20) 2.00
z ² .		-	
ēt al.	26.89	€	0.70 (0.20, 1.31)
ek et al.	27.34		1.11 (0.60, 1.71)
ragin et al.	6.62		1.01 (-1.19, 3.25
ao et al.	16.89		-0.20 (-1.19, 0.9
et al.	15.42		2.12 (1.01, 3.36)
rk et al.	1.39		5.44 (0.20, 11.0)
ang et al.	5.44		2.33 (-0.20, 4.81
		•	1.11 (0.40, 1.71)
leterogeneity: Tau'=0.0000; Clu'=13.42 p=0.037; 1'=55.3%		1	
g3 ctal.	33.73	-	0.90 (0.30, 1.41)
ack et al.	34.29		1.31 (0.80, 1.82)
aragin et al.	5.08		1.31 (-0.90, 3.46
ao et al.	16.15		-0.20 (-1.19, 0.9
et al.	5.2		-0.10 (-2.27, 2.0
rk et al.	1.29		- 3.15 (-1.39, 7.90
	4.27		2.22 (-0.30, 4.60
lang et al. Hal	4.27	•	0.90 (0.40, 1.41)
Heterogeneity: Tau ¹ =0 0000; Chl ² = 9 07 p=0 170; 1 ² =33 8%		~	and from the first
ag4			
etal	39.05		1.01 (0.40, 1.51)
iek et al.	40.35		1.01 (0.50, 1.51)
aragin et al.	2.14	_	1.21 (-1.39, 3.77
so et al.	12.26	- -	0.10 (-0.80, 1.21
et al.	3	- <u></u>	1.51 (-0.60, 3.77
rk et al.	.61		5.02 (0.10, 10.19
ang et al.	2.59		2.22 (0.00, 4.71)
tal .		6	1.01 (0.60, 1.31)
Interogeneity: Tau ² =0.0002; Clu ² = 28.82 p+0.000; 1 ² =79.2%		-	
¢.			
et al.	19.87		0.80 (0.30, 1.41)
ek et al.	20	• [-1.78 (-2.18, -1.)
ragún et al.	9.12		0.10 (-3.34, 3.56
io et al.	18.09		-0.10 (-1.29, 1.0
et al.	13.71		-1.69 (-3.82, 0.5
rk et al.	6.49		1.82 (-2.66, 6.61
ang et al.	12.71		2.12 (-0.40, 4.60
		<₽	-0.10 (-1.49, 1.4
leterogeneity: Tau'=0.0003; Clu'=64.12.p=0.000; 1'=90.6%			
5	11.00		
et al.	33.88	- C	0.50 (0.00, 1.01)
ek et al.	33.89		-1.49 (-2.08, -1.1
et al.	21.55		1.31 (-0.90, 3.46
rk et al.	10.68	-	-0.40 (-4.40, 3.7
tal leterogeneity: Tau ² =0.0002; Clu ² =32.63 p=0.000; 1 ² =90.8%		~_>	-0.10 (-1.69, 1.5
[2] .			
ek et al.	43.97	: -	2.43 (2.02, 2.94)
et al.	40	[_]	-1.88 (-3.73, 0.0
rk et al.	16.04		-4.02 (-11.22, 3)
dal .			-0.40 (-4.21, 3.6
Heterogeneity: Tau ¹ =0.0009; Cht ¹ =21.10 p=0.000; 1 ¹ =90.5%			

(d)

nsdy	Weight (%)	Excessive risk (
ag0 i et al. sek et al. suc et al. hang et al. i et al. i et al. 'ang et al. 'ang et al. 'ang Hererogeneity: Tau'=0.0005; Chi'= 700.42 p=0.000; I'	14.33 14.6 14.14 14.54 14.22 13.75 =99.1%	2.12 (1.51, 2.74) -0.10 (-0.30, 0.0) 1.01 (0.30, 1.92) 4.08 (3.77, 4.39) 0.60 (0.10, 1.41) 3.15 (2.02, 4.29) 1.61 (0.00, 3.25)
agl i et al. wo et al. tang et al. i et al. arfs et al. arfs et al. pai Heterogeneity: Tau ² =0.0007; Chi ² = 712.87 p=0.000; I ² Heterogeneity: Tau ² =0.0007; Chi ² = 712.87 p=0.000; I ²	14.56 14.76 14.72 13.1 14.3 14.3	1,51 (0,90, 2,12) -1,19 (-1,29, -1.0 0,20 (-0,50, 1,11) 3,36 (2,94, 3,67) 2,222 (0,40, 4,06) 0,10 (-0,80, 1,01) 2,022 (1,01, 3,15) 1,11 (-0,80, 3,15)
ag2 i et al. seic et al. uos et al. tang et al. i et al. rang et al. /rang et al.	15.26 16.335 14.43 16.1 9.79 15.39 15.39	0.50 (0.20, 1.41) -0.40 (-0.50, -0.) 0.20 (-0.50, 1.11) 1.61 (1.31, 1.92) -1.39 (-3.25, 0.4) -0.30 (-0.50, 0.3) 1.41 (0.30, 2.74) 0.30 (-0.50, 1.2)
ag3 et al. ek et al. uo et al. et al. et al. rfk et al. ang et al. yal deterogeneity: Tan ² =0.0000; Chi ² = 19.55 p=0.003; I ² =	16.29 28.3 10.84 24.45 3.57 8.5 8.04	0.70 (0.10, 1.31 0.10 (0.00, 0.20 0.20 (-0,70, 1.1 0.80 (0.30, 0.90 0.00 (-1.78, 1.8; -1.19 (-2,27, -0, 0.70 (-0.30, 2.0; 0.20 (-0.10, 0.6)
et al. sek et al. 20 et al. et al. srk et al. ang et al. 21 Seter ogeneity: Tau ² =0.0000; Chi ² = 18.30 p=0.003; I ² =	20.55 27.28 15.33 6.58 18.53 11.74	0.50 (-0.10, 1.1) 0.00 (-0.10, 0.1) 0.20 (-0.70, 1) 0.30 (-1.29, 2.3) -1.39 (-2.18, -0, -0.20 (-1.49, 0.5) -0.10 (-0.70, 0.4)
êf al. ek et al. so et al. et al. rk et al. ang et al. gal seterogeneity: Tau ² =0.0000; Chi ² =25.9 p=0.000; Γ ² =30 seterogeneity: Tau ² =0.0000; Chi ² =25.9 p=0.000; Γ ² =30	19.44 24.1 15.73 7.92 19.05 13.76	0.30 (-0.30, 0.9) -0.80 (-0.90, -0. 0.30 (-0.40, 1.3) -0.60 (-2.27, 1.1) -1.69 (-2.27, -1) -0.60 (-1.69, 0.4) -0.60 (-1.09, 0.0)
ek al. ek al. et al. et al. fat est al. fat est ogeneity:: Tau ² =0.0000; Cht ² =25.83 p=0.000; P ² =4 fat est ogeneity:: Tau ² =0.0000; Cht ² =25.83 p=0.000; P ² =4	23.08 30.08 19.51 27.33	0.00 (-0.60, 0.6 -1.09 (-1.29, -1 0.20 (-0.60, 1.0 -1.39 (-1.78, -1 -0.70 (-1.29, -0
127 ek et al. et al. fal fal feterogeneity: Tau ² =0.0001; Chi ² =45.42 p=0.000; I ² =5 feterogeneity: Tau ² =0.0001; Chi ² =45.42 p=0.000; I ² =5	35.57 30.61 33.82	-0.10 (-0.20,0.0 0.20 (-0.60,1.0) -1.69 (-2.08,-1) -0.60 (-1.69,0.6

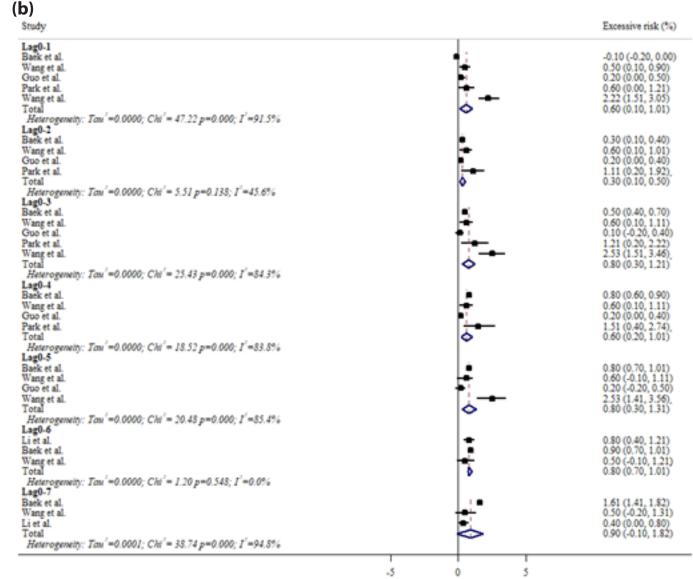
Air pollution and adult atopic dermatitis

(e)

tudy	Weight (%)		Excessive risk (%)
agf0 aek et al. /anz et al.	35.33 30.5 34.17	1	0.90 (0.70, 1.01) -2.57 (-3.44, -1.69) 1.11 (0.60, 1.51)
otal Heterogeneity: Tau'=0.0001; Cht'= 58.11 p=0.000; 1'=96.6%			-0.10 (-1.39, 1.21)
agl aek et al. ark et al.	35.23 30.71		1.01 (0.80, 1.21) -1.69 (-2.37, -1.00)
"ang et al. otal Heterogeneity: Tau ['] =0.0001; Chi ['] = 53.61 p=0.000; I ['] =96.3%	34.06		1.01 (0.60, 1.31) 0.20 (-0.90, 1.21)
ag2 ack et al.	35.37	4	0.80 (0.60, 0.90)
ark et al. 'ang et al. 'otal Hearogeneity: Tau'=0.0001; Chi'= 46.84 p=0.000; I'=95.7%	30.87 33.76		-1.69 (-2.37, -1.00) 0.80 (0.50, 1.31) 0.00 (-1.09, 1.11)
ig.3 sek et al.	42.94		0.40 (0.20, 0.80)
urk et al. ang et al. otal	17.38 39.68		-1.59 (-2.96, -0.20 0.80 (0.50, 1.31) 0.20 (-0.50, 0.90)
Heterogeneity: Tau'=0.0000; Cht'= 11.11 p=0.004; I'=82.0% ag4			
eik et al. eik et al.	\$6.02 .83		0.30 (0.20, 0.50) -0.30 (-1.69, 1.21)
'ang et al. otal Heterogeneity:: Tou ['] =0.0000; Chi ['] = 1.70 p=0.427; I ['] =0.0%	13.15	*	0.50 (0.10, 0.90) 0.30 (0.20, 0.50)
g5 ek et al.	60.69	-	0.60 (0.40, 0.70)
ck et al. ang et al. stal Steterogeneity: Tau ['] =0.0000: Chi ['] =3.71 p=0.156; I ['] =46.1%	6.7 32.62	•	-0.30 (-1.49, 0.90) 0.20 (-0.20, 0.70) 0.40 (0.10, 0.70)
ig6 iek et al.	55.2		1.01 (0.80, 1.11)
iek et al. ek et al. tal Heterogeneity: Ten ['] =0.0001: Chi ['] =9.32 p=0.002: 1 ['] =89.3%	44.8		-0.70 (-1.78, 0.40) 0.20 (-1.39, 1.92)
g7			
ašk et al. urk et al. otal Heterogeneity: Tau ['] =0.0000; Chi ['] =0.10 p=0.755; I ['] =0.0%	98.19 1.81		0.60 (0.40, 0.70) 0.70 (-0.30, 1.82) 0.60 (0.40, 0.70)

(a)

·)		
	Weige	
inuty	Co.	Extensive risk (%)
Legh-1		
Wang et al.	27.44	1.21 (0.60, 1.71)
Out et al.	29.24	0.30 (-0.10, 0.50)
Park et al.	21.65	-0.10(-1.19, 1.01)
Varig et al.	21.66	2.54 (3.82, 4.00)
lotal		1.01 (0.90, 2.02)
Hannagenery: Tan =0.0001; Cin = 26.82 p=0.000; T =82.8%		
agh-1		5 20 5000000000000000000000000000000000
Varg et al.	42.79	0.10(0.10, 0.10)
Varg et al.	18.42	1.21 (0.50, 1.92)
Due et al.	32.59	0.20 (-0.10, 0.50)
Park et al.	62	0.40(-1.09, 1.82)
enal		0.40(0.00, 0.90)
Heterogeneity: Tan =0.0000; Cit/= 11.03 p=0.011; 1'=72.8%		
lag9.3		
Varg et al.	30.07	0.00(0.00,0.00)
Varg et al.	21.78	1.51 (0.40, 2.02)
Duo et al.	27.46	0.10(-0.30, 0.40)
Parks et al.	8.42	0.20 (-1.59, 1.92)
Vang et al.	12.26	3.15 (1.7), 4.50
otal		0.70 (0.10, 1.31)
Hateragenety: Tan =0.0000; Cin = 31.74 p=0.000; I = 07.4%		
agh-i		
Vary et al.	38.39	1.21 (0.50, 2.02)
Dave et al.	45.65	0.00 (-0.40, 0.40)
halk et al.	15.96	0.30(-1.69, 2.43)
and	1079	0.50 (-0.40, 1.51)
Base againsty: Tax'=0.0001; Cis'= 0.24 p=0.010; I'=73.7%		enderste enderste
Lage 3		
Wang et al.	34.51	1.41 (0.50, 2.22)
Duo et al.	37.31	0.00 (-0.30, 0.40)
Varge et al.	24.1	315(151,470)
Total	48.5	1.41 (-0.20, 1.05)
Hannapowery: Tax'=0.0002; CW = 20.72 p=0.999; I'=99.3%		E.41 (40.24) 3 (00)
turn diands the second on a total house to serve		
	-1	0 5


Figure S2. The meta-analyses of the short-term effects in the cumulative lag model, of (a) PM2.5, (b) PM10, (c) SO_2 , (d) NO_2 , and (e) O_3 exposure (per 10 µg/m³ increment) on exacerbations of atopic dermatitis in adults. The black squares represent the effect estimates of the individual studies and the diamonds represent the summary effect estimates.

*p < 0.007 based on the Bonferroni correction.

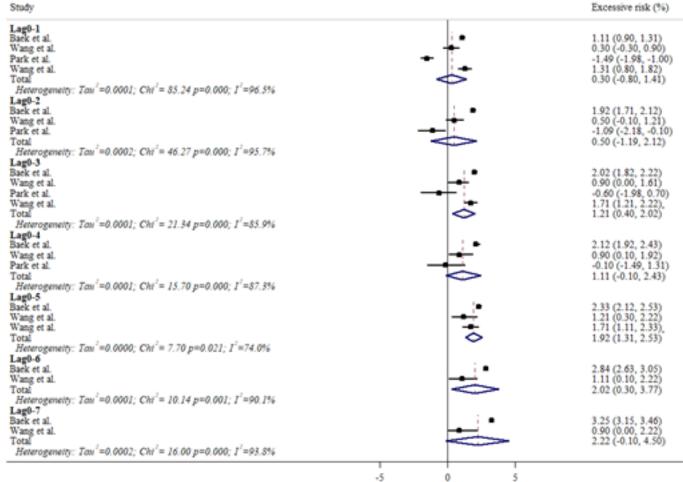
PM2.5, particulate matter < 2.5 µm in diameter; PM10, particulate matter < 10 µm in diameter.

Air pollution and adult atopic dermatitis

(c)

Study		Excessive risk (%)
Lag0-1 Back et al. Wang et al. Guo et al. Park et al. Wang et al. Total Haterogeneity: Ton '=0.0001; Cht'= 12.43 p=0.014; 1'=67.8%		2.33 (1.82, 2.84) 2.22 (-0.10, 4.08) 1.01 (0.00, 1.92) 2.94 (-0.80, 6.82) 6.50 (3.15, 9.97) 2.33 (1.21, 3.56)
Lag0-2 Back et al. Wang et al. Guo et al. Park et al. Total Heterogeneity: Tow'=0.0004; Cht'= 24.57 p=0.000; I'=87.8%		4.08 (3.56, 4.81) 1.71 (-0.60, 5.44) 0.90 (-0.50, 1.92) 4.60 (0.70, 8.55) 2.74 (0.50, 4.92)
Lag0-3 Back et al. Wang et al. Park et al. Wang et al. Total Heterogeneity: Tou ¹ =0.0011; Cht ¹ = 63.33 p=0.000; 1 ¹ =93.7%		5.55 (4.92, 6.18) 0.00 (-3.54, 3.98) 0.00 (-1.39, 1.21) 6.50 (3.77, 9.31) €.29 (2.53, 10.19) 3.67 (0.50, 6.82)
Lag0-4 Back et al. Wang et al. Guo et al. Park et al. Total Heterogeneity: Ton '=0.0020; Cht'= \$5.63 p=0.000; I'=96.5%		6.61 (5.97, 7.36) -0.10 (-4.30, 4.29) -0.90 (-2.08, 0.80) → 7.36 (4.50, 10.41) 3.25 (-1.29, 8.11)
Lag0.5 Back et al. Wang et al. Guo et al. Wang et al. Total Heterogeneity: Tau'=0.0019; Cht'= 64.02 p=0.000; 1'=95.3%		5.65 (4.92, 6.50) 0.30 (-4.30, 5.44) -1.19 (-2.86, 0.10) 6.50 (2.22, 11.52) 2.74 (-1.78, 7.47)
Li et al. Back et al. Wang et al. Total Heterogeneity: Tou ['] =0.0003; Chi ['] = 16.67 p=0.000; I ['] =55.0%		2.22 (1.31, 3.15) 4.50 (3.77, 5.34) -1.19 (-5.73, 4.29) 2.74 (0.60, 5.02)
Back et al. Wang et al. Li et al. Total Heterogeneity: Tau'=0.0076; Chi'= 43.55 p=0.000; I'=95.9%		16.30 (15.49, 17.12) -1.29 (-6.48, 4.29) € 18 (5.34, 15.26) 7.14 (-3.25, 18.53)
	-5 0 5	

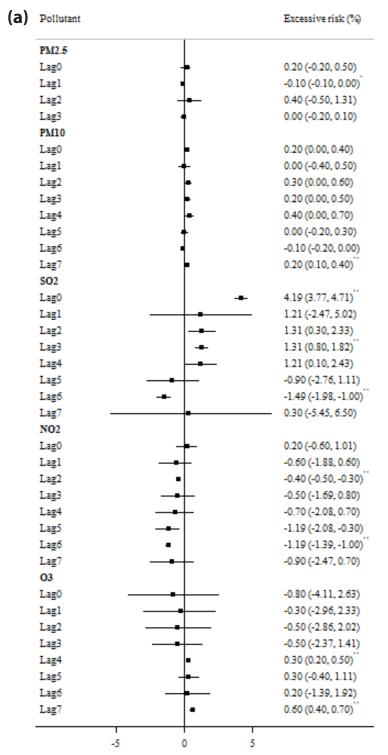
Air pollution and adult atopic dermatitis



(**d**)

Study	Weight (%)		Excessive risk (%)
Lag0-1			
Baek et al.	21.89	•	-0.80 (-1.00, -0.70)
Wang et al.	18.2		1.41 (0.70, 3.67)
Quo et al.	20.21	_ _	0.90 (-0.20, 1.71)
Park et al.	19.81		-0.10 (-1.19, 0.90)
Wang et al.	19.89		3.05 (2.12, 4.29)
Total			0.80 (-0.70, 2.33)
Heterogeneity: Tau =0.0003; Chi = 72.86 p=0.000; I =94.5%			
Lag0-2			
Back et al.	31.26	• I	-1.19 (-1.39, -1.00)
Wang et al.	18.61		1.51 (0.00, 3.46)
Guo et al.	26.23		0.50 (-0.40, 1.41)
Park et al.	23.9		-0.90 (-1.98, 0.30)
Total			-0.20 (-1.29, 1.01)
Heterogeneity: Tau'=0.0001; Chi'= 21.37 p=0.000; I'=86.0%			
Lag0.3			
Back et al.	23.26 17.49	•	-1.09 (-1.29, -0.90)
Wang et al.			1.31 (-0.40, 3.36)
Quo et al.	20.69	_	0.00(-1.09, 1.11)
Park et al.	19.16	!	-1.59 (-2.96, -0.10) 3.15 (1.71, 4.60)
Wang et al.	19.4		3.15 (1.71, 4.60)
Total			0.30 (-1.29, 1.82)
Heterogeneity: Tau =0.0003; Chi = 42.85 p=0.000; I =90.7%			
Lag0-4			
Baek et al.	40.16	• (-1.19 (-1.39, -1.00)
Wang et al.	15.49		1.31 (-0.60, 3.46)
Guo et al.	24.51		-0.50 (-1.88, 0.70)
Park et al.	19.84		-2.18 (-3.73, -0.60)
Total			-0.80 (-1.78, 0.20)
Heterogeneity: Tau =0.0001; Chi = 8.9 p=0.031; I =66.3%			
Lag0-5			
Back et al.	28.52	•	-1.88 (-2.08, -1.69)
Wang et al.	21.63		1.31 (-0.90, 3.56)
Guo et al.	25.82		-0.50 (-1.78, 0.70)
Wang et al.	24.03		2.43 (0.70, 4.19)
Total			0.20 (-1.88, 2.22)
Heterogeneity: Tau'=0.0004; Chi'= 36.72 p=0.000; I'=91.8%			
Lag0-6			
Li et al.	34.05	·	2.33 (1.21, 3.46)
Back et al.	34.98	•	-2.66 (-2.96, -2.47)
Wang et al.	30.97		1.01 (-1.29, 3.46)
Total			0.10 (-3.73, 4.08)
Heterogeneity: Tau'=0.0033; Chi'= 53.88 p=0.000; I'=96.3%			
Lag0-7			
Back et al.	36.03	←	-3.73 (-3.92, -3.44)
Wang et al.	36.03 32.9		1.51 (-1.29, 3.77)
Li et al.	31.08		3.46 (0.10, 6.82)
Total			0.20 (-4.59, 5.23)
Heterogeneity: Tau'=0.0017; Chi'= 34.90 p=0.000; I'=94.3%			
the stand and stand and stand stands a stand	,		
	1		
	-5	0 5	

(e)



(a)				F	Risk of bia	as domain	IS		
(-)		D1	D2	D3	D4	D5	D6	D7	Overall
	Park et al. (2020)	•	•	+	+	•	+	+	+
	Patella et al. (2020)	•	+	+	+	+	-	+	-
	Montnemery et al. (200	•) +	+	-	+	8	-	+	
	Pesce et al. (2015)	•	+	+	+	8	-	•	
1	Lopez et al. (2021)	•	+	+	+	•	-	•	-
	Huls et al. (2018)	•	+	-	+	•	-	8	8
	Tang et al. (2020)	•	+	-	+	+	-	•	•
	Seo et al. (2016)	•	+	+	+	+	+	+	•
	Tang et al. (2017)	•	+	+	+	+	+	+	+
(L .)		D6: Bia	is due to mis is in measur is in selectio	ement of ou n of the repo	orted result.				Low
(b)		D1	D2	D3	lisk of bia D4	bs domain	D6	D7	Overal
1	Baek et al. (2020)	-	Ŧ	•	•	•	-	-	-
	Wang et al. (2019)	-	Ŧ	Ŧ	•	Ŧ	-	-	-
	Wang HL et al. (2021)	-	Ŧ	Ŧ	Ŧ	Ŧ	<u> </u>	-	-
	Li et al. (2016)	•	•	+	•	+	•	•	-
	Wang WZ et al. (2021)	•	+	+	+	+	•	•	•
Study	Park et al. (2021)	•	+	+	+	+	•	-	-
	Karagün et al. (2020)	-	+	+	+	+	-	-	-
	Li et al. (2017)	-	+	+	+	+	-	-	-
	Zhang et al. (2021)	-	+	+	+	+	-		
	Guo et al. (2019)	-	+	+	+	•	-		
	Nakhjirgan et al. (2019)	-	+	+	+	•		-	
		Domains: D1: Bias d	lue to confo	unding.					Judgement
		D2: Bias o D3: Bias i D4: Bias o D5: Bias o D6: Bias i	fue to select n classificati due to devial fue to missi n measurem n selection of	ion of partie on of intervi- tions from in ng data. tiont of outco	entions. ntended int omes.	erventions.			 Seriou Modera Low

Figure S3. The risk of bias in regards to studies investigating (a) long-term and (b) short-term effects of outdoor air pollutants on atopic dermatitis in adults.

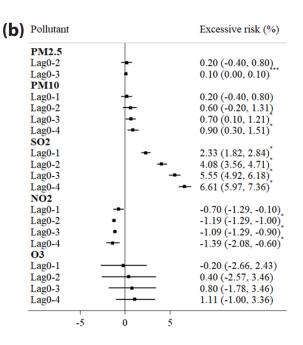
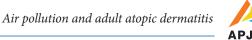



Figure S4. The meta-analyses on the short-term effects of outdoor air pollutants (per 10 μ g/m³ increment) on exacerbations of atopic dermatitis in adults, in either (a) the single lag or (b) the cumulative lag model, after excluding single-center studies. The black squares represent the effect estimates of the individual studies and the diamonds represent the summary effect estimates.

p* < 0.012; *p* < 0.006; ****p* < 0.025, based on the Bonferroni correction.

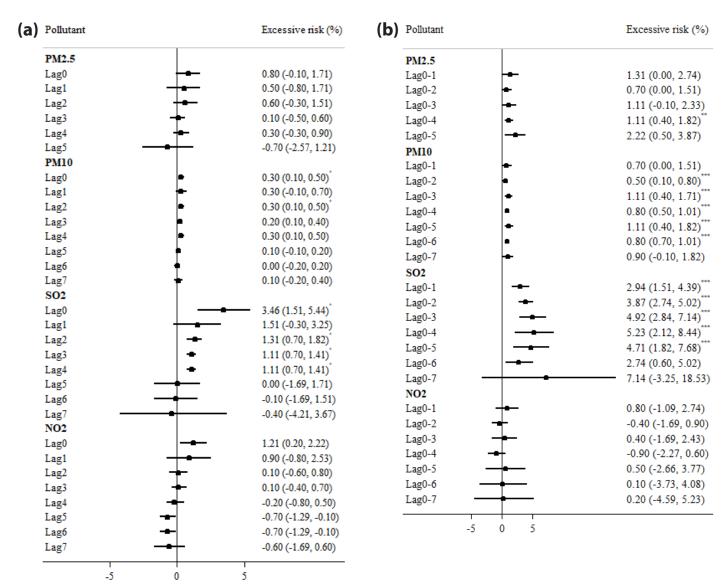


Figure S5. The meta-analyses on the short-term effects (exacerbations), in either (a) the single lag or (b) the cumulative lag model, the cumulative lag model, of outdoor air pollutants (per 10 μ g/m³ increment) on atopic dermatitis in adults after excluding studies with an overall high risk of bias. The black squares represent the effect estimates of the individual studies and the diamonds represent the summary effect estimates.

p* < 0.006; *p* < 0.01; ****p* < 0.007, based on the Bonferroni correction.