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Innate immunity in COVID-19: 
Drivers of pathogenesis and potential therapeutic targets
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Abstract

A novel severe acute respiratory syndrome COVID-19 caused by coronavirus SARS-CoV-2 has been confirmed to in-
fect more than 100 million people globally, with mortality reaching nearly 3 million as of March 2021. The symptoms 
vary widely, from the absence of any symptoms to death. The severity of COVID-19 relates to hyperinflammatory con-
ditions with acute respiratory distress syndrome (ARDS), which leads to multiple-organ failure and death. Innate im-
munity plays an important role in the early response to SARS-CoV-2 infection and regulates the pathogenesis and its 
clinical outcomes. The most severe cases of COVID-19 present with increased innate immune cell infiltration in the 
lung, and elevated pro-inflammatory cytokines in the blood serum that are associated with disease severity. Here we re-
view the innate immune response to SARS-CoV-2 infection based on the recent reports and discuss the potential roles 
of innate immune cells and their mediators in pathogenesis that dictate the outcome of the disease. Understanding the 
roles of innate immune responses at the initial stages of infection may provide early windows into treatment and clues 
for vaccine development. 
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with infected individuals being asymptomatic or having mild 
to severe symptoms. The factors that may influence symptoms 
include age, sex, underlying diseases, virus load, host genetics, 
and the host immune status.3

Most of the COVID-related deaths are due to acute respi-
ratory distress syndrome (ARDS) and multiple-organ failure 
due to hyperimmune activation. Recent studies have high-
lighted the importance of innate immunity in controlling ear-
ly response to SARS-CoV-2 infection and its detrimental roles 
upon dysregulation. Severe cases of COVID-19 have consis-
tently shown increasing innate immune cell infiltration, espe-
cially neutrophils and inflammatory monocytes/macrophages 
in the lung and increasing pro-inflammatory cytokines in the 
blood serum, also known as cytokine storm.4 Here, we have 
focused on the innate immune responses to SARS-CoV-2, 
based on recent reports from patients as well as in vitro and 
in vivo studies in animal models. Combining insights from 
SARS and MERS, we propose a crucial function of innate 
immune response to SARS-CoV-2 and its detrimental ef-
fect, if not properly controlled in severe cases of COVID-19. 

Introduction
The novel coronavirus SARS-CoV-2, which caused the 

outbreak of the severe acute respiratory syndrome, called 
COVID-19, was first identified and reported in Wuhan, Chi-
na, in December 2019. In China, more than 90,000 cases of 
COVID-19 infection have been reported as of November 
2020, and the infection has spread rapidly to other regions 
around the world. WHO declared COVID-19 a pandemic 
on 11 March 2020.1 As of March 2021, more than one hun-
dred million people are confirmed to have been infected, 
with nearly three million deaths worldwide (refer to Johns 
Hopkins University Coronavirus Resource Center). In 2002 
and 2011, the world had experienced severe respiratory syn-
dromes caused by two other strains of coronavirus simi-
lar to COVID-19, i.e., severe acute respiratory syndrome 
(SARS) and Middle East respiratory syndrome (MERS). 
Whole genome sequencing of SARS-CoV-2 reveals 77.5% 
and 50% genome sequence identity to SARS-CoV and MERS-
CoV, respectively.2 However, the infection of COVID-19 is 
more widespread and has a higher rate of mortality. The  
severity of COVID-19 has a wide spectrum of symptoms, 
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Understanding how innate immunity to SARS-CoV-2 is dys-
regulated, which may exacerbate the disease, will provide ear-
ly windows into treatment and clues for vaccine development. 

Recognition of SARS-CoV-2 by the host, and the 
interaction with innate immune cells
Viral entry and replication

The SARS-CoV-2 genome is a single-stranded RNA en-
coding a spike (S) glycoprotein, matrix (M), envelope (E), and 
nucleocapsid (N) proteins, along with some accessory pro-
teins.5 Angiotensin-converting enzyme 2 (ACE2) is known as 
the receptor for SARS-CoV-2 entry in human cells, which is 
a shared feature with SARS, but not MERS.6 ACE2 is a type 
I membrane protein expressed in type II alveolar cells.5 A 
heavily glycosylated S protein comprises of two subunits, S1 
and S2. Virus entry depends on the binding of the receptor 
binding domain (RBD) of the S1 subunit to ACE2 on the host 
cells.6 After this, the S protein is processed by the host cel-
lular proteases, such as serine protease TMPRSS2 and furin, 
which allows protein cleavage at the S2 subunit. This event is 
followed by a conformational change, leading to membrane 
fusion and the release of viral genomic RNA into the cyto-
plasm.6 Consistent with this finding, serine protease inhibitor 
blocks SARS-CoV-2 infection of lung cells. 

In addition to type II alveolar cells, ACE2 is also expressed 
in other cells, including esophageal epithelial cells, enterocytes 
of the small intestine, cholangiocytes, myocardial cells, proxi-
mal tubular cells of kidney, and bladder urothelial cells.7 This 
implies that SARS-CoV-2 could also infect other organs, re-
sulting in non-respiratory symptoms in COVID-19 patients. 
An earlier study reported that tissue resident CD169+ mac-
rophages express ACE2, implying that SARS-CoV-2 might 
directly infect macrophages as well.8 Moreover, SARS-CoV-2 
can also infect T lymphocytes directly, resulting in lymphope-
nia in the patients.9 Antibody-dependent entry is yet another 
possibility, but no direct evidence is available. 

Antigen processing and presentation 
During viral replication, viral RNA is recognized as a 

pathogen-associated molecular pattern (PAMP) by pattern- 
recognition receptors (PRRs). Currently, multiple molecules 
associated with SARS-CoV-2 are reported to be recognized as 
PAMPs. TLR3 and TLR7/8 are activated by endosomal dsR-
NA/ssRNA, and both RIG-I and MDA5 are activated by cyto-
solic dsRNA. The activation of TLR7/8 leads to the induction 
of transcription factors NF-κB, and the expression of pro-in-
flammatory cytokines and chemokines (e.g., IL-6, TNF-α, 
CXCL8 and CXCL10), whereas the activation of RIG-I and 
MDA5 leads to the induction of transcription factors IRF3 
and IRF7, resulting in the expression of type I IFN (IFN-α 
and IFN-β).10 Additionally, type I IFN binds to its receptor 
and activates the JAK/STAT signaling pathway via IRF9, re-
sulting in the induction of IFN-stimulated genes (ISGs), such 
as RNASEL and CXCL10 (Figure 1).11 Genetic studies of fa-
milial genetic traits revealed that TLR3 and TLR7/8 may be 
the main TLRs for recognizing SARS-CoV-2 during the in-
fection.12 For surface TLRs, TLR4 showed strongest binding

interaction with the S protein of SARS-CoV-2 when com-
pared to TLR1 and TLR6, suggesting that TLR4 signaling may 
be a mechanism driving immunopathology in COVID-19.13 
Interestingly, aging human monocytes show impaired RIG-I 
signaling upon viral infection, and SARS-CoV-2 infection is 
most severe in aging patients.14 This observation suggests that 
RIG-I pathway may also recognize SARS-CoV-2 at the initial 
stages of infection. 

Antigen presentation is a necessary immunological pro-
cess to stimulate adaptive immunity. In coronavirus infection, 
both humoral and cellular immunity play an important role 
in mounting a successful antiviral response. Antigen present-
ing cells (APCs) at the entry sites, which are macrophages and 
dendritic cells, take up viral antigens, and process and present 
the antigens to T lymphocytes through major histocompatibil-
ity complex (MHC, or HLA in human)-T cell receptor (TCR) 
interaction.15 CD4+ T cells or T helper cells recognize non-self 
antigens presented by the MHC class II on professional anti-
gen-presenting cells, including dendritic cells, macrophages, 
some epithelial cells, and B cells.16 In contrast, CD8+ T cells 
recognize non-self antigens presented by MHC-I on nucleat-
ed cells, such as virus infected cells. The activation of CD4+ T 
cells leads to B cells maturation and generation of neutralizing 
antibody, which is necessary to eliminate the virus.16 Besides 
common APCs, pulmonary endothelial cells (ECs) express 
high levels of genes involved in MHC class II-mediated an-
tigen presentation in lung tumors, implying that ECs may act 
as APCs as well. However, ECs do not express co-stimulatory 
molecules like the professional APCs, i.e., dendritic cells and 
macrophages.17 

An earlier study reported the depletion of tissue-resident 
alveolar macrophages, and a concomitant increase in inflam-
matory monocyte-derived macrophages in severe COVID-19 
cases.18 In SARS-CoV, which uses ACE2 for cellular entry 
similar to SARS-CoV-2, MHC class II is the main molecule 
presenting antigens to T cells.15 Moreover, previous studies re-
ported the correlation between HLA polymorphisms and the 
susceptibility to SARS-CoV infection.19 However, the associa-
tion between HLA gene polymorphisms and prognosis of pa-
tients in COVID-19 remains uncharacterized. This knowledge 
will help to predict the susceptibility of the patients to SARS-
CoV-2 infection, and maybe a target for therapeutic interven-
tion, such as a vaccine.

Innate immune response to SARS-CoV-2
Innate immunity plays an essential role in controlling 

viral infection at an early stage to prevent viremia. Further-
more, the activation of innate immune cells is crucial for the 
initiation of adaptive immunity. Innate immune cells, such as 
macrophages, monocytes, dendritic cells, and neutrophils, de-
tect viral infection using PRRs to recognize PAMPs and dan-
ger-associated molecular patterns (DAMPs). Hyperactivation 
of innate immune response is often associated with immu-
nopathology and in coronavirus infections as in COVID-19 
(Figure 2) and innate immune cells are essential for activating 
a specific and effective immune response to SARS-CoV-2 in-
fection.



Figure 2. Roles of innate immune cells in antiviral immunity at the normal stage, driven immunopathology at severe disease 
stages and COVID-19. 
Figure created using Biorender (https://biorender.com/).
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Figure 1. Innate immune response cascade to SARS-CoV-2 infection.
SARS-CoV-2 infection initial immune response by the activation of RNA recognition receptor including TLR3, TLR7/8, RIG-I 
and MDA5, resulting in the induction of downstream transcription factors NF-κB, IRF3 and IRF7 and the expression of pro-in-
flammatory cytokines, chemokines and type I IFN. Besides, type I IFN binds to its receptor and activates the JAK/STAT signaling 
pathway, resulting in the induction of IFN-stimulated genes (ISGs). 
Figure created using Biorender (https://biorender.com/).
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Figure 2. (Continued)
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Involvement of neutrophils
In viral infection, neutrophils are recruited at the site of 

infection early, and mediate the elimination of viruses using 
reactive oxygen species (ROS) and phagocytosis. Infected 
epithelial cells increase the production of neutrophil che-
moattractants, resulting in neutrophils infiltration and accu-
mulation in the infected tissue.20 The increase in neutrophils 
infiltration of the lung, and blood neutrophil-to-lymphocyte 
ratio are associated with disease severity and poor outcomes 
in COVID-19.4 Compared to other types of pneumonia, bron-
choalveolar lavage fluid (BALF) from COVID-19 patients 
showed higher percentages of neutrophils and mast cells.21 
Single-cell transcriptome analysis revealed that macrophages 
and neutrophils are the main innate immune cells present in 
the lung in severe COVID-19 cases.12 Higher pro-inflammato-
ry cytokine and chemokine production in severe COVID-19 
cases increases neutrophil activity related to immunopatholo-
gy. One possible mechanism of neutrophil-driven immunopa-
thology is neutrophil extracellular trap (NET) formation. NET 
is an extracellular web-like structure of chromatin and gran-
ular protein that is released extracellularly for killing patho-
gens. A massive NET formation can trigger inflammation and 
tissue damage in several diseases.22 Recent studies showed 
high levels of NET markers, including cell-free DNA, myelop-
eroxidase-DNA (MPO-DNA), and citrullinated histone H3 
(Cit-H3), in the blood serum of COVID-19 patients, which 
may contribute to inflammation, microthrombosis, and ARDS 
in COVID-19.23 NET markers in blood serum from patients 
requiring mechanical ventilation are higher when compared 
to patients breathing naturally. Moreover, COVID-19 patient 
sera promote NET release from healthy control neutrophils 
in vitro. Currently, it is not known whether higher neutrophil 
activation is caused by virus per se or the effect of hyperim-
mune activation of other components. 

Critical roles of monocytes and macrophages
Monocytes and tissue-resident macrophages are phago-

cytes that can be found in most tissues, and respond to infec-
tion as the first line of defense.24 In COVID-19, the activation 
of resident alveolar macrophages, CD68+CD169+ macrophages

of lymph nodes, and CCR2+ monocytes through PRRs triggers 
the production of type I IFN-γ and other pro-inflammatory 
cytokines, such as IL-6, IL-1β, and TNF-α, that have effective 
antiviral functions, but also contribute to lung tissue damage 
and inflammation.25-27 Moreover, macrophages and monocytes 
produce high levels of chemokines, including CCL2, CXCL8, 
CXCL10, MCP1, and MIP1A, that can recruit other innate 
and adaptive immune cells to the site of infection.27 Consis-
tent observations from various studies revealed that cytokines 
produced and secreted from macrophages, especially IL-6 and 
IL-1β, are related to ARDS in COVID-19, and the increased 
macrophage and monocyte infiltration is the hallmark of tis-
sue damage in severe COVID-19.27

Analysis at a single cell level in the lungs of COVID-19 
patients revealed that differences between mild and severe 
COVID-19 cases can be attributed to overexpression of cy-
tokines, including CCL2, CCL3, CCL20, IL8, IL1B, and TNF, 
in non-resident macrophages. This heightened response by 
inflammatory macrophages and epithelial cell interaction is 
the key component that drives tissue damage and respirato-
ry failure.28 In a longitudinal study of COVID-19 patients, 
changes in phenotypes and functions in the CD14+ monocyte 
subset, including poor induction of COX2 and enhanced cy-
cle marker Ki67, were reported. This result strongly indicat-
ed that monocytes/macrophages are the hallmark changes in 
COVID-19 patients.29

Roles of dendritic cells
Dendritic cells (DCs) can be subdivided into at least two 

groups, viz., conventional DCs (cDCs) (also known as my-
eloid DCs [mDCs]), such as CD141+ DC (cDC1) and CD1c+ 
DCs (cDC2), and the CD123hi plasmacytoid DCs (pDCs). 
pDC is a potent type I interferon secretor, which is crucial for 
antiviral mechanisms in several virus infections, such as HSV-
1, MCMV, influenza, and SARS-CoV, whereas cDC is a potent 
APC that can initiate an efficient antiviral adaptive immune 
response.30 DCs recognize viruses by TLR9 (for DNA viruses) 
and TLR7 (for RNA viruses), resulting in the secretion of type 
I interferons that have antiviral function and can contribute to 
immunopathology.31 In SARS-CoV infection, the mechanism 
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of virus immune evasion is reported to be due to reduction 
or delay in the expression of type I antiviral cytokines, viz., 
IFN and IL-12p40, and increased expression of inflammato-
ry chemokines in infected DCs.32 Besides increasing chemo-
kine expression, DCs also increase the death receptor ligand 
TNF-related apoptosis-inducing ligand (TRAIL), which may 
be associated with lymphopenia in SARS patients.33 More-
over, cytokines IL-6 and IL-8 secreted from SARS-CoV in-
fected epithelial cells can modulate the function of DCs by 
impairing their naïve T cell priming ability.34 COVID-19 pa-
tients showed a dramatic decrease in CD1c+ DCs in the blood 
during severe disease progression, which correlated with high 
inflammatory markers in blood serum and severe clinical out-
comes.25 In severe COVID-19 cases, the frequency of pDCs in 
the periphery is reduced. Peripheral pDCs impair the produc-
tion of IFN-α in response to TLR stimulation via the decrease 
in mTOR signaling.35 Furthermore, peripheral mDCs reduce 
the expression of CD86 and HLA-DR, which are crucial for 
antigen presentation and the induction of helper T cell re-
sponse.35 This implies the association between impaired DC 
capacity in response to TLR stimulation and the reduction of 
virus-specific T cell response in severe COVID-19 cases. 

Decreasing blood granulocytes in severe COVID-19 cases
Viruses can induce granulocyte degranulation, which re-

sults in both neutralizing viruses and contributing to immu-
nopathology.36 The decrease in peripheral blood eosinophils 
and basophils has been reported in severe COVID-19 cases. 
Decreasing eosinophil count may indicate a poor outcome, 
and is related to higher viral load in COVID-19 patients.37 In 
contrast, the increase of eosinophils in blood after treatment 
may indicate a better outcome in COVID-19 patients.38 An-
other study found the rapid increase of eosinophil infiltration 
in the lungs of COVID-19 patients with pneumonia.39 In den-
gue virus infection, basophils are the target for antibody-en-
hanced virus infection, and play a role in the pathogenesis 
by the induction of vasoactive cytokines.40 For SARS-CoV-2 
infection, the decrease of peripheral blood basophils may be 
because of the increase of basophil migration to the infection 
site. Moreover, CR3, which recognizes molecules associated 
with tissue homeostasis, especially fibrinogen, and plays a role 
in complement-mediated leukocyte recruitment, is signifi-
cantly higher in granulocytes of COVID-19 patients requiring 
ventilatory support, and leads to increase in phagocytosis and 
cytokine production.41 This suggests that granulocytes play a 
crucial role in immunopathology of SARS-CoV-2 infection, 
and that CR3 may be used as a biomarker for tissue damage 
in severe COVID-19 cases. 

Myeloid-derived suppressor cells (MDSCs)
MDSCs are a mixed population of myeloid cells that reg-

ulate immune response to prevent immune hyperactivation 
during infection, inflammation, and several diseases. Acti-
vation of MDSCs by proinflammatory mediators dampens 
the immune response to the tumor, resulting in promotion 
of tumor progression. Moreover, MDSCs have been report-
ed to expand many pathological conditions.42 In COVID-19, 

massive expansion of MDSCs in peripheral blood mononucle-
ar cells (PBMCs) of severe COVID-19 patients were observed 
compared with mild COVID-19 cases, implying that MDSCs 
respond to the inflammation driven by hyperactivation of the 
immune response and pro-inflammatory mediators. Thus, 
MDSCs may play an important role in limiting inflammation 
by immune suppressive function in COVID-19 patients.43 

Other innate immune cells: Mucosal-associated invariant 
T (MAIT) cells, γδ T cells, NKT cells, and innate lymphoid 
cells (ILCs) 

Besides the classical innate immune cells as described 
above, there are other novel innate immune cells that may 
be associated with antiviral activity and immunopathology in 
SARS-CoV-2 infection, including invariant T cells and ILCs. 
Innate T cells comprise of MAIT, γδ T cells, and NKT cells, 
which contribute to the innate mucosal immunity, including 
the lung tissue.44 These groups of T cells recognize non-pep-
tide antigens using non-classical MHC molecules, and are ac-
tivated during the early stages of infection to initiate an adap-
tive immune response. COVID-19 patients show changes in 
the phenotypes and frequency of innate T cells in both blood 
and the airways. Most severe COVID-19 cases showed T cell 
lymphopenia, which has been correlated with disease severi-
ty. Frequency of circulating MAIT, NKT, and γδ T cells was 
decreased in patients with severe COVID-19, whereas activat-
ed CD69+ MAIT, NKT, and γδ T cells was increased in the 
airways,45,46 suggesting that the infiltration into the lung and 
the activation of innate T cells during SARS-CoV-2 infection 
may play a role in immunopathology. Another study on γδ T 
cell phenotypes in COVID-19 patients confirmed that these 
cells were dramatically decreased in the peripheral blood 
of patients. However, increase in CD4+ γδ T cells within the 
population was observed, implying that CD4+ γδ T cells may 
function in antigen presentation to initiate adaptive immunity 
during viral infection.47 

ILCs are innate lymphocytes that can be dividing into five 
subsets, viz., natural killer (NK) cells, ILC1, ILC2, ILC3, and 
lymphoid tissue inducer (LTi) cells.48 NK cells and ILC1 play 
a crucial role in antiviral infection by the secretion of IFN-γ, 
which activates CD8+ T cell antiviral activity. However, NK 
cells are different from ILC1 as they show cytotoxicity func-
tions.48 In SARS-CoV-2 infection, total lymphocytes as well as 
NK cells are decreased in blood.49 ILC2 mainly produces TH2 
cell-associated cytokines IL-5 and IL-13, whereas ILC3 and 
LTi cells mainly produce TH17 cell-associated cytokines IL-17 
and IL-22 during the activation.50 COVID-19 patients showed 
a decrease in the number of circulating total ILC, and the al-
teration of ILC subsets.51 Moreover, ILC precursors (ILCp) 
decreased, whereas CD69+ ILCp and the percentage of ILC2, 
which plays a role in lung tissue repair, increased.51 IL-33 re-
leased by injured epithelial cells in the lung drives differentia-
tion and activation of ILC2, which plays a role in pulmonary 
fibrosis.52 The result suggested that the infection may promote 
the maturation of circulating ILCp. Additionally, the increase 
of circulating ILC1 and reduction in circulating ILC2 were as-
sociated with severity in COVID-19.
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Immunopathology related to innate immune re-
sponse in COVID-19

Most of the severely affected COVID-19 patients experi-
ence life-threatening complications, including ARDS, pneu-
monia, acute cardiac injury, acute kidney injury, shock, and 
multiple-organ failure.53 The immunopathology of severe 
COVID-19 stems from hyperactivation of the immune re-
sponse, especially in the innate immunity, resulting in uncon-
trolled systemic inflammation (Figure 3). 

Cytokine storm 
Cytokine storm is the main mechanism of systemic in-

flammation-mediated immunopathology in severe COVID-19 
cases. In most of the severe COVID-19 cases, infiltration of 
innate immune cells, such as neutrophils and macrophages, 
is increased in the lungs, leading to massive production of 
pro-inflammatory cytokines and chemokines, including IL-6, 
IL-1β, IL-2, IL-8, IL-17, IL-10, G-CSF, GM-CSF, IFN-γ, IP10, 
MCP1, MIP1A, and TNF-α. Furthermore, prominent acute 
inflammatory markers, such as acute phase reactants, includ-
ing C-reactive protein, lactate dehydrogenase, and D-dimer, 
are also increased.53 The release of a large number of pro-in-
flammatory cytokines, chemokines, and acute phase protein

induces tissue damage, leading to ARDS, multiple-organ fail-
ure, and death associated with disease severity in COVID-19 
patients. 

Pyroptosis
Pyroptosis is a inflammasome-mediated and caspase 1-de-

pendent program cell death in response to various patholog-
ical stimuli. The danger signals (PAMPS and DAMPS) trig-
ger cell pyroptosis in macrophages and lymphocytes by the 
upregulation of inflammasome, especially NLRP3. This event 
leads to the activation of caspase 1, which results in the pro-
cessing of pro-inflammatory cytokines IL-1β and IL-18.54 Pre-
vious studies reported the induction of pyroptosis in MERS-
CoV infection and the activation of NLRP3 inflammasome, 
which regulated IL-1β secretion in SARS-CoV infection.55,56 
In SARS-CoV-2 infection, patients showed elevated serum 
IL-1β, serum lactate dehydrogenase, neutrophil infiltration 
in the lung, and lymphopenia.37,53 Infiltration of lymphocytes 
and macrophages in the lung may cause an increase in cell 
death markers, which results in chronic pyroptosis activation. 
Therefore, pyroptosis activation may be one of the mecha-
nisms promoting tissue damage and organ failure in SARS-
CoV-2 infection. 

Figure 3. Schematic representation of virus-induced innate immune cell-driven immunopathology.
In COVID-19 patients, the virus induces an increase in the infiltration of innate immune cells, including neutrophils, macro-
phages, DCs, granulocytes, MDSCs, and other innate immune cells, in the lung, leading to cytokine storm, cell pyroptosis, NET 
formation, impaired Type I IFN production, degranulation of granulocytes, and various unknown effects that result in inflamma-
tion, lung tissue damage, and immunopathology. 
Figure created using Biorender (https://biorender.com/).
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Antiviral type I IFN
Type I IFN is a subgroup of interferon that can be divided 

into many subtypes, including multiple IFN-α, single IFN-β, 
IFN-ε, IFN-κ, and IFN-ω.57 During viral infection, type I IFN 
is mainly produced by pDCs in response to TLR7 and TLR9 
induction.57 Type I IFN functions by inducing anti-viral func-
tion, modulating innate immune response, and activating 
adaptive immune response.57 A previous study showed that 
delayed type I IFN response increases the accumulation of in-
flammatory monocytes and macrophages, resulting in immu-
nopathology and promoting severe symptoms in SARS-CoV 
infection.58 Type I IFN also plays a role in driving the pro-
gression of COVID-19 severely. Classical monocytes in severe 
COVID-19 cases exhibit the upregulation of both, type I IFN 
and TNF/IL-1β responsive genes, which leads to hyper-in-
flammation-driven immunopathology.59 Longitudinal analy-
ses showed delayed, but sustained high levels of type I IFN in 
severe COVID-19 cases, and the positive correlation between 
viral load with plasma IFNα, IFNγ, and TNF levels in moder-
ate and severe cases.60 Moreover, other studies imply that im-
paired type I and III IFN was associated with persistent blood 
viral load and inflammatory responses, contributing to patho-
genesis and mortality in COVID-19.58,61 Type I IFN drives the 
inflammation-mediated lung tissue damage by increasing in-
flux of inflammatory innate immune cells, and inducing tran-
scription factor NFκB, leading to an increase in TNFα and 
IL-6.61 These results suggest that type I IFN is associate with 
inflammatory features in COVID-19 patients, and the impair-
ment of type I IFN plays a critical role in immunopathology 
of severe COVID-19 cases.

The SARS-CoV-2 coronavirus is more transmissible than 
other coronaviruses and the resulted disease presents with 
wide spectrum of symptoms. Factors that dictate the clinical 
outcome identified to date include age, sex, underlying dis-
eases, and immune status of the patient.3 The mechanisms of 
SARS-Cov-2 immune evasion and immune response in SARS-
Cov-2 infection have not been completely elucidated. Howev-
er, many studies supported that innate immune modulation 
by virus plays a critical role in driving SARS-Cov-2 infectivity 
by delaying viral clearance and promoting immunopathology. 
One possible mechanism that may increase the transmission 
is the RBD of SARS-CoV-2 that exhibits higher affinity bind-
ing to its host receptor ACE2, compared to SARS-CoV.62 The 
dominant mutant D614G within the spike protein of SARS-
CoV-2 variants associate with increased viral entry and viral 
replication in the host cells and easier transmission.63 More-
over, SARS-CoV-2 evade the innate immune response and 
inhibits IFN signaling using several mechanisms including 1) 
impairing PRR recognition of the viral RNA and the structure 
of SARS-CoV-2 spike protein increase masking the RBD do-
main from neutralizing antibodies compared to SARS-CoV,62 
leading to the increased viral replication and delayed innate 
immune response 2) IFN antagonists such as ORF3b are con-
served in SARS-CoV-2 and more efficient in delaying IFN re-
sponse than in SARS-CoV.64 Understanding how SARS-CoV-2 
manipulate host innate immune response will not only help 
better understand the effect on host immune response but 
also facilitate a better vaccine strategy to target innate im-
mune functions against this virus. 

COVID-19 immunotherapy targeting innate im-
munity

Presently, there are no vaccines or FDA-approved drugs 
specific to COVID-19 treatment. Ongoing clinical research is 
focusing on developing a new strategy for COVID-19 treat-
ment. Current clinical treatments depend on the symptoms of 
patient, including anti-viral drugs, anti-inflammatory drugs, 
and supportive treatment. According to current studies, there 
are several therapeutic strategies targeting innate immunity 
that may be effective for COVID-19 treatment.

Several monoclonal antibodies against cytokine or cyto-
kine receptor antagonists are being used to inhibit the inflam-
matory function of cytokines for preventing cytokine storm 
in COVID-19 patients. Tocilizumab treatment, which inhibits 
IL-6, effectively prevented ARDS in severe COVID‐19 cases.65 
Other studies reported that the treatment with recombinant 
IL-1RA (e.g., anakinra) and anti-GM-CSF (e.g., mavrilimum-
ab) was associated with clinical improvement, especially re-
spiratory function, in COVID-19 patients.66,67 Moreover, cyto-
kine blocking antibodies, having anti-inflammatory functions, 
such as anti-IFNγ (e.g., emapalumab) are also being tested in 
combination with anakinra (NCT04324021) on COVID-19 
patients. Targeting other cytokines associated with the induc-
tion of pulmonary fibrosis, including IL-33 (e.g., astegolimab), 
IL-13 (e.g., lebrikizumab), IL-4 (e.g., dupilumab), IL-9 (e.g., 
MEDI-528), and IL-17 (e.g., bimekizumab) also are other op-
tions for fighting COVID-19, that may promote the resolution 
of inflammation.52 Besides cytokine-blocking antibodies, those 
targeting chemokines, such as CCL2 (e.g., carlumab), CCR5 
(e.g., leronlimab), and CXCR2 (e.g., AZD5069), possibly in-
hibit tissue recruitment of inflammatory innate immune cells 
into the lungs, which might increase clinical improvement by 
decreasing lung inflammation.28 Although many studies have 
shown that cytokine storm is the main mechanism driving 
ARDS, some studies also showed that the activation of NLRP3 
inflammasome, and the impairment of Type I IFN production 
could be the key to increase in disease severity in COVID-19 
patients. Therefore, specific inhibitors, such as colchicine, da-
pansutrile, and CP-456773, for inhibiting the activation of 
NLRP3 inflammasome, and the administration of Type I IFN 
may be effective therapeutic strategies for the treatment of 
COVID-19.59,68 

Besides the treatment using the conventional antiviral 
drugs or specific antibodies and inhibitors, there are many 
clinical studies on developing new treatment strategies that 
are more specific, safe, and effective for COVID-19. Most of 
these approaches aim to modulate the immune response to 
reduce the overactivation of the immune system and tissue 
repair. Mesenchymal stem cells (MSCs) are used for cell ther-
apy in several immune-mediated inflammatory diseases. In-
travenous administration of MSCs in severe COVID-19 cases 
resulted in an increase in the number of peripheral lympho-
cytes, regulatory DCs, and anti-inflammatory cytokine IL-10 
levels, and a decrease in proinflammatory cytokine TNF-α 
level.69 Moreover, intravenous MSCs supported the repair 
of lung tissue, resulting in the reduction of lung pathology.69 
Presently, researchers have found a new type of macrophage 
named nerve and airway associated macrophages (NAMs), 
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