

Seroprevalence of Human Herpesvirus 6 and 7 Infections in the Thai Population

Uraiwan Kositanont,¹ Chantapong Wasi,¹ Namtip Ekpatcha,¹ Anong Poomchart,² Sirirut Likanonsakul,³ Isaaracha Suphanip,⁴ Kruavon Balachandra,⁵ and Koichi Yamanishi,⁶

Human herpesviruses 6 and 7 (HHV-6 and HHV-7), are T-lymphotropic viruses. HHV-6 was isolated from patients with lymphoproliferative disorders¹ and acquired immune deficiency syndrome.² HHV-6 is the causative agent of exanthem subitum (ES).³ In addition, HHV-6 has been associated with other diseases such as infectious mononucleosis,^{4,5} neurological disorders^{6,7} and liver dysfunction.^{4,8} The possible co-tumorigenic role of HHV-6 has been studied in an NIH-3T3 mouse fibroblast system⁹ and in tissue biopsies of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma.¹⁰

HHV-7 was first isolated from peripheral blood of a healthy individual.¹¹ Recently, HHV-7 has been isolated from saliva of healthy children and adults with high frequency.¹²⁻¹⁴ HHV-7 infection is not known to be associated with any diseases, although HHV-7 was recently isolated from a patient with chronic fatigue syndrome¹⁵ and from a child with chronic EBV infection.¹⁶ Recently, it was reported that HHV-7 is another causative agent of ES.¹⁷

The major target of the two viruses is the CD4 + T cell. HHV-6 and HHV-7 have the ability to establish life-long latency and can be

SUMMARY Seroprevalence of human herpesvirus 6 (HHV-6) and 7 (HHV-7) was estimated in the Thai population using indirect immunofluorescence assay to determine serum antibodies to HHV-6 and HHV-7. A total of 333 serum samples obtained from umbilical cord blood and venous blood of healthy persons at Siriraj Hospital and Krabi Hospital during 1990-1993 were investigated. Of 73 infants aged 0-1 month, 73% and 78% were found tob e positive for HHV-6 and HHV-7 antibodies, respectively. Antibody to HHV-6 was detected in age groups 2-3 months (38%), 4-5 months (14%), 6 months (44%), 7-11 months (66%), 1-2 year (84%), 3-4 years (82%), 5-9 years (83%), 10-19 years (83%), 20-29 years (80%), 30-39 years (67%), and over 40 years (58 %), respectively. The positive rates of HHV - 7 antibody in age groups 2-3 months, 4-5 months, 6 months, 7-11 months, 1-2 years, 3-4 years, 5-9 years, 10-19 years, 21-29 years, 30-39 years, and over 40 years were 50%, 21%, 10%, 37%, 47%, 82%, 75%, 72%, 72%, 67%, and 67%, respectively. At 6 months of age as the starting time of infections, 34% (14/41) and 9% (3/41) of infants had presumed primary infections of HHV-6 and HHV-7, respectively. In the follow-up study, 53% (20/38) of children were infected with HHV-6 prior to HHV-7 and only 5% vice versa. Eighty-four percent of children had acquired antibody to HHV-6 by 1-2 years old while 82% of children had acquired antibody to HHV-7 by 3-4 years old. These results suggest that HHV-6 and HHV-7 are prevalent viruses in the Thai population. The infections of both viruses begin at 6 months of age. However, infection of HHV-7 in most children begins later. The data also provided evidence that antigenic distinction between HHV-6 and HHV-7 existed with a limited cross-reactivity in an anbitody test. The antibody responses to HHV-6 and HHV-7 occurred independently.

reactivated in the host. A study has suggested that HHV-7 resides latently in T cells and that it could be induced from latency by T cell activation. It can also act as a helper virus for the reactivation of HHV-6 from latency.¹⁸ HHV 6 isolates are divided into 2 groups, A and B.¹⁹ HHV-6 group A includes the strains GS, Davilla and U1102. HHV-6 group B includes the strains Z29, HST and SF. In fact, the strains of group A and B show high cross-reactions in antibody testing; either strain can be From the ¹ Department of Microbiology, ⁴ Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, ² Krabi Hospital, Krabi Province, ³ Bamrasnaradura Hospital, ⁵ National Institute of Health, Department of Medicine Sciences, Ministry of Public Health, Thailand, ⁶ Research Institute for Microbial Diseases and Osaka University Medical School, Osaka University, Osaka, Japan.

Correspondence : Uraiwan Kositanont, Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. selected for seroprevalence study. HHV-6 and HHV-7 are prevalent viruses which infect children in very early life. As previously reported by others,²⁰⁻²⁷ infection with HHV-6 occurs prior to 2 years of age and HHV-7 infects children later in childhood. On the basis of a limited survey of age-related HHV-7 infection, the aim of this study is to determine the seroprevalence of HHV-7 infection in Thai children and adults. The data provide basic information on HHV-7 infection and are compared to those of HHV-6 infection in Thailand.

MATERIALS AND METHODS

Study population

Three hundred and thirtythree sera were obtained from umbilical cord blood, designated as 0 month, and venous blood of healthy Thai people ranging in age from 1 month to 70 years. Serum samples were collected at Siriraj Hospital and Krabi Hospital during 1990 to 1993. Five paired sera for crossreactivity testing were obtained from ES patients.

Preparation of viral antigens

HHV-6 (HST strain) was isolated in the laboratory from a patient with ES as described previously³ and HHV-7 (RK strain) was kindly provided by Dr N Frenkel.¹¹ HHV-6 was grown in MT-4 cells²⁸ and HHV-7 was grown in SUP-T1 cells.²⁹ The culture medium was RPMI 1640 medium with fetal calf serum [10%], glutamine [2mM], and kanamycin [100 μ g/ml]. Cytopathic effect (CPE) of both viruses showing balloon-like syncytial cells was observed. Approximately 30-50% of cell population were infected as measured by CPE and indirect immunofluorescence assay (IFA) at 5-9 days postinfection. The cells were harvested, washed with phosphate buffer saline, and smeared on glass slides.

Antibody test by indirect immunofluorescence assay

The cells on glass slides were fixed in cold acetone at -20°C for 10 minutes. The fixed cells were incubated with human sera for 1 hour at 37°C and then with fluorescein isothiocyanate-conjugated goat anti-human IgG (Dako, Denmark) for 1 hour. The sera were serially diluted from 1:10 to 1:320. The fluorescence was visualized on slides under fluorescence microscope (Nikon, Japan) and the titer was defined as reciprocal of the last dilution which gave a positive reaction. A titer of ≥ 10 was considered as a positive result.

RESULTS

Reactivity of antibodies to HHV-6 and HHV-7 in paired sera from ES patients

Antibody titers to HHV-6 and HHV-7 in five paired sera from ES patients are compared in Table 1. All 5 paired sera showed a four-fold rise in titers of anti-HHV-6. Antibody to HHV-7 was detected in these convalescent sera with a low titer of 10. This observation revealed that there was an antigenic distinction between HHV-6 and HHV-7 with limited cross-reactivity.

Prevalence of HHV-6 and HHV-7 antibodies in children and adults

The results of sera from 333 individuals assayed by IFA for antibodies to HHV-6 and HHV-7 are shown in Table 2. The seropositive rate of HHV-6 infection was lowest in the age-group 4-5 months (2/14,14%). The seropositive rate started to increase to 44% at the age of 6 months. After 6 months of age, the prevalence of antibody increased to 66% (25/38) in the age-group 7-11 months. It rose rapidly to 84% (41/49) at 1-2 years of age. The prevalence of antibody was maintained at 82% (9/11), 83% (20/24), 83% (20/24), 83% (15/18) and 80% (20/15) at 5-9, 10-19 and 20-29 years of age, respectively. The seropositivity rate declined gradually to 67% (8/12) and 58% (7/12) in age-groups of 30-39 and over 40 years, respectively.

The prevalence of anti-HHV-7 was also analyzed. The data were similar to those of HHV-6 antibody. There was a decline in seropositive

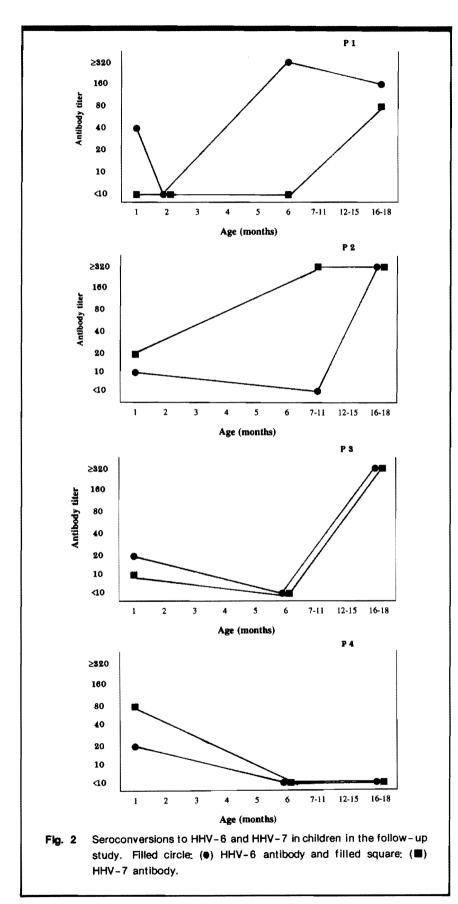
	sera from ES pat	ients.				
Case	Serum phase	Titers of antibody to				
No.		HHV-6	HHV-7			
1	acute	< 10	< 10			
	convalescent	80	10			
2	acute	< 10	< 10			
	convalescent	40	10			
3	acute	< 10	< 10			
	convalescent	80	10			
4	acute	< 10	< 10			
	convalescent	160	10			
5	acute	< 10	< 10			
	convalescent	80	10			

Age	No. of sera	HHV	-6	HHV-7			
		No. (%) seropositive	GM titer	No. (%) seropositive	GM tite		
0-1 month	73	53 (73)	21.2	57 (78)	17.3		
2-3 months	16	6 (38)	10.4	8 (50)	11.4		
4-5 months	14	2 (14)	6.4	3 (21)	6.4		
6 months	41	18 (44)	19.3	4 (10)	6.3		
7-11 months	38	25 (66)	37.9	14 (37)	11.4		
1-2 years	49	41 (84)	100.3	23 (47)	29.3		
3-4 years	11	9 (82)	48.3	9 (82)	51.5		
5-9 years	24	20 (83)	49.0	18 (75)	16.8		
10-19 years	18	15 (83)	14.7	13 (72)	15.9		
20-29 years	25	20 (80)	18.4	18 (72)	17.9		
30-39 years	12	8 (67)	12.6	8 (67)	14.1		
≥40 years	12	7 (58)	10.0	8 (67)	10.6		
Total	333	226 (68)		186 (56)			

Table 2. Prevalence of HHV-6 and HHV-7 antibodies in healthy individuals.

rate of HHV-7 antibody from 78% at 0-1 month of age to 10% (4/41) at the age of 6 months. The prevalence of antibody increased to 37% (14/38) and 47% (23/49) in age-groups 7-11 months and 1-2 years, respectively. The highest seropositivity rate was 82% (9/11) in age-group 3-4 years and the value maintained through age-group 10-29 years. The seropositive rate declined to 67% (8/12) in age-group over 30 years. The seroprevalence of HHV-6 and HHV-7 infections in children and adults was 68% (226/333) and 56% (186/333), respectively.

The geometric mean (GM) titers of anti-HHV-6 and HHV-7 are shown in Table 2. The GM titers of HHV-6 antibody increased rapidly at 6 months of age and reached the highest GM titer of 100.3 in agegroup 1-2 years. Although the GM titer decreased to 48.3 and 49.0 between age-groups 3-4 years and 5-9 years, they were considerably higher than that of 14.7 in the agegroup 10-19 years. In contrast to HHV-6, GM titers of HHV-7 antibody rose gradually to 11.4 at 7 months, rapidly reached a peak of 51.5 at 3-4 years, and then declined to 16.8 in the age group 5-9 years.


Age of acquired antibodies to HHV-6 and HHV-7

Distribution of HHV-6 and HHV-7 antibody titers is shown in Fig. 1a and 1b. Seventy-four percent and 79% of infants aged 0 month had antibodies to HHV-6 and HHV-7, respectively, which reflected to be transferred antibodies from mothers. Transplacental antibody to HHV-6 decreased to the lowest levels at 4 and 5 months of age and HHV-6 infection began at 6 months of age. In Fig. 1b, the maternal antibody to HHV-7 declined to the lowest level at 5 months of age. At 6 months of age, 34% (14/41) and 9% (3/41) of infants whose antibody titers were ≥ 40 showed presumable primary infections of HHV-6 and HHV-7, respectively. Almost all children (84%) had acquired antibody to HHV-6 by 1-2 years old while 47% of children had acquired antibody to HHV-7. Most children (82%) had acquired antibody to HHV-7 at 3-4 years of age.

Follow-up study of HHV-6 and HHV-7 infections

To clarify the infections of HHV-6 and HHV-7 in early age of life, a follow-up study of 38 children aged 1-18 months was carried out. Data in Fig. 2 show seroconversion patterns of HHV-6 and HHV-7 infections. It is clear that most children 53% (20/38) were infected with HHV-6 prior to HHV-7 (pattern P1). Only 5% (2/38) of children had experienced HHV-7 prior to HHV-6 (pattern P2). In 34% (13/ 38) of children, the data could not show the infection time of both viruses (pattern P3). Pattern P4

	r	Fig. 1a										
Positive rate	74	71	36	50	12	17	44	66	84	82	83	83
≥320								•••••	•••••	••	••	
160							•		••••••• • • •	•=		
80		•	•						••••	••		•
40		•••••		•					•	•		
20	•									•		
10						•				•		
<10	*****	••••	***	•			••••• •••••	 		**		•••
Age	0 mo	1 mo	2 mo	3 mo	4 mo	5 mo	6 mo	7-11 mo	1-2 yr	3-4 yr	5-9 yr	10- 19 уг
	mo = m	onth	yr = yea	ar	I			L	L		L	
Positive	79	76	57		1 -	. 1b 0	10	27				70
rate	19	/0	57	0	38	0	10	37	47	82	75	72
≥320							•	***	*****	••	•	
160	.							•		•••		
80	•	•••					.	•				
40								•	••	•••	•••••	
20	•••••	•						•				
10			•				•	•		•		•••
<10	•••••		******	••			••••• ••••• ••••• ••••• •••• •••• •••• ••••	10000 00000 00000 00000	001001 001001 001001 001001 001001	••	*****	
Age	0 mo	1 mo	2 mo	3 mo	4 mo	5 mo	6 mo	7-11 mo	1-2 yr	3-4 yr	5-9 yr	10- 19 yr
	mo = m Fiç	3. 1		tion of			dy titer rious aç			HHV-	7	

demonstrated that 13% (5/38) of children were not infected with both viruses throughout 18 months of age. The data in Fig. 2 also shows the discordant presence of HHV-6 and HHV-7 antibodies in same sera. Some sera from children whose maternal antibodies declined showing high HHV-6 antibody titers of \geq 320 were negative for HHV-7 antibody. Some children without detectable anti-HHV-6 had acquired antibody to HHV-7. It was confirmed that antibody responses to HHV-6 and HHV-7 occurred independently.

DISCUSSION

HHV-6 and HHV-7, two recently discovered viruses, are Tlymphotropic human herpesviruses. The molecular, immunological, and biological properties of HHV-7 are related to HHV-6, but the two viruses differ. Although Southern blot analysis with DNA probes of HHV-6 revealed homology to HHV-7 for 37.4% of the total probe length,²⁹ immunologic properties were different.²⁵ The finding in this study also supports the evidence of immunological distinction between HHV-6 and HHV-7 with a limited cross-reactivity (Table 1). The antibody responses to HHV-6 occurred independently since sera from some children had high anti-HHV-6 titers without detectable anti-HHV-7 and vice versa (Fig. 2). Furthermore, the results from this study show definitely that some children had experienced HHV-7 infection prior to HHV-6 infection (Fig. 2).

Several studies regarding HHV-6 and HHV-7 seroepidemiology in different countries demonstrate that HHV-6 and HHV-7 are prevalent viruses in the population. The seroprevalence of HHV-6 infection in this study was 68%. These data were similar to those reported in previous studies in Thai population²⁷ and in other countries.^{20,22-24} However, both studies in Thailand showed higher seropositivity than that in another study²¹ due to different serum dilution screening. The seroprevalence of HHV-7 infection of healthy adults in this first study in Thailand was 72% (18/25). These data were not different from previous studies in other countries.^{25,26}

At birth, 74% and 79% of cord blood samples were positive for HHV-6 and HHV-7 antibodies, respectively, due to the presence of maternal antibody. The positive rates of HHV-6 and HHV-7 infections decreased from birth to their lowest values at 4-5 months and at 6 months of age, respectively, because of the half-life of IgG class in transplacental antibody. The data here indicated that HHV-6 infection began at 6 months of age while HHV-7 infection in most children occurred later. The data of HHV-6 infection related to the results reported previously³⁰ showed that ES occurred in infants aging from 3 months to 1 year and most frequently at age 4-6 months. The acquired antibody to HHV-6 which reached 84% at 1-2 years of age agreed with those reported previously.20-24,27

The finding in this study that HHV-7 infection which began at 6 months agreed with findings from previous reports.^{14,26} However, these data were in contrast to the children at 15-25 months without seropositivity for HHV-7.25 Interestingly, the GM titers of anti-HHV-6 and seropositive rates were maintained at high values in age group 3-4 years and 5-9 years (Fig. 1). The explanation of these results may be that some viruses such as HHV-718 and dengue virus³¹ can also act as helper viruses for the reactivation of HHV-6 from latency.

In conclusion, the results confirm the evidence that HHV-6 and HHV-7 are prevalent viruses with widespread infections in children and adults. Primary infection of the two viruses occurs in early life.

ACKNOWLEDGEMENTS

The authors would like to thank Dr N Frenkel (Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA) for HHV-7 (RK strain) and the nurses at Siriraj Hospital and Krabi Hospital for help in specimen collection. This work was supported by a grant from Japan Society for the Promotion of Science (JSPS).

REFERENCES

- Salahuddin SZ, Ablashi DV, Markham PD, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 1986; 234 : 596-600.
- Downing RG, Sewankambo N, Serwadda D, et al. Isolation of human lymphotropic herpesviruses from Uganda. Lancet 1987; ii : 390.
- 3. Yamanishi K, Okuno T, Shiraki K, et al. Identification of human herpesvirus-6 as a causal for exanthem subitum. Lancet 1988; i : 1065-7.
- 4. Steeper TA, Horwitz CA, Ablashi DV, et al. The spectrum of clinical and laboratory findings resulting from human herpesvirus-6 (HHV-6) in patients with mononucleosis-like illnesses not resulting from Epstein-Barr virus or cytomegalovirus. Am J Clin Pathol 1990; 93 : 776-83.
- Ablashi DV, Salahuddin SZ, Josephs SF, Balachandran N, Krueger GR, Gallo RC. Human herpesvirus-6 (HHV-6). In Vivo 1991; 5 : 193-9.
- Komaroff A, Saxinger C, Buchwald D, Geiger A, Gallo RC. A chronic "Postviral" fatigue syndrome with neurological features : serologic association with human herpesvirus-6 (HHV-6). Clin Res 1988; 36 : 743A.
- Yamanishi K, Kondo K, Mukai T, et al. Human herpesvirus-6 (HHV-6) infection in the central nervous system. Acta Paediatr Jpn 1992; 34 : 337-43.
- Dubedat s, Kappagoda N. Hepatitis due to human herpesvirus-6. Lancet 1989; ii : 1463-4.
- Razzaque A. Oncogenic potential of human herpesvirus-6 DNA. Oncogene 1990; 5 : 1365-70.

- Kositanont U, Kondo K, Chongkolwatana C, et al. Detection of Epstein-Barr virus DNA and HHV-6 DNA in tissue biopsies from patients with nasopharyngeal carcinoma by polymerase chain reaction. Southeast Asian J Trop Med Public Health 1993; 24 : 455-60.
- Frenkel N, Schirmer EC, Wyatt LS, et al. Isolation of a new herpesvirus from human CD4 + T cells. Proc Natl Acad Sci USA 1990; 87 : 748-52.
- Wyatt LS, Frenkel N. Human herpesvirus-7 is a constitutive inhabitant of adult human saliva. J Virol 1992; 66 : 3206-9.
- Hidaka Y, Liu Y, Yamamoto M, et al. Frequent isolation of human herpesvirus-7 from saliva samples. J Med Virol 1993; 40 : 343-6.
- Yoshikawa T, Asano Y,Kobayashi I, et al. Seroepidemiology of human herpesvirus-7 in healthy children and adults in Japan. J Med Virol 1993; 41: 319-23.
- Berneman ZN, Gallo RC, Ablashi DV, et al. Human herpesvirus 7 (HHV-7) strain JI: independent confirmation of HHV-7. J Infect Dis 1992; 166 : 690-1.
- Kawa-ha K, Tanaka K, Inoue M, et al. Isolation of human herpesvirus 7 from a child with symptoms mimicking chronic Epstein-Barr virus infection. Bri J Haematol 1993; 84 : 545-8.
- Tanaka K, Kondo T, Torigoe S, Okada S, Mukai T, Yamanishi K. Human herpesvirus-7 : another causal agent for roseola (exanthem subitum). J Pediatr 1994; 125 : 1-5.
- Frenkel N, Wyatt LS. HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Dev Biol Stand 1992; 76: 259-65.
- Ablashi DV, Agut H, Berneman Z, et al. Human herpesvirus-6 strain groups: a nomenclature. Arch Virol 1993; 129 : 363-6.
- Saxinger C, Polesky H, Eby N, et al. Antibody reactivity with HBLV (HHV-6) in U.S. populations. J Virol Methods 1988; 21 : 199-208.
- Balachandra K, Ayuthaya PI, Auwanit W, et al. Prevalence of antibody to human herpesvirus-6 in women and children. Microbiol Immunol 1989; 33 : 515-8.
- 22. Okuno T, Takahashi K, Balachandra K, et al. Seroepidemiology of human

herpesvirus-6 infection in normal children and adults. J Clin Microbiol 1989; 27: 651-3.

- Briggs M, Fox J, Tedder RS. Age prevalence of antibody to human herpesvirus-6. Lancet 1990; i: 1058-9.
- Levy JA, Ferro F, Greenspan D, Lennette ET. Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet 1990; 335 : 1047-50.
- Wyatt LS, Rodriguez WJ, Balachandran N, Frenkel N. Human herpesviruses-7 : antigenic properties and prevalence in children and adults. J Virol 1991; 65 : 6260-5.
- 26. Clark DA, Freeland JML, Mackie

PLK, Jarrett RF, Onions DE. Prevalence of antibody to human herpesvirus-7 by age. J Infect Dis 1993; 168 : 251-2.

- 27. Sutthent R, Puthavatana P, Louisirirotchanakul S, Tunsupasawasdikul S, Wasi C, Thongcharoen P. Prevalence of human herpesvirus-6 in Thai people and its correlation with human immunodeficiency virus type 1 infection. Southeast Asian J Trop Med Public Health 1993; 24 : 260-4.
- 28. Asada H, Yalcin S, Balachandra K, Higashi K, Yamanishi K. Establishment of titration system for human herpesvirus-6 and evaluation of neutralizing antibody response to the virus. J Clin Microbiol 1989; 27 : 2204-7.
- Berneman ZN, Ablashi DV, Li G, et al. Human herpesvirus-7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus-6 and human cytomegalovirus. Proc Natl Acad Sci USA 1992; 89 : 10552-6.
- Balachandra K, Bowonkiratikachorn P, Poovijit B, et al. Human herpesvirus-6 (HHV-6) infection and exanthem subitum in Thailand. Acta Paediatr Jpn 1991; 33: 434-9.
- Balachandra K, Chimabutra K, Supromajakr, et al. High rate of reactivation of human herpesvirus 6 in children with dengue hemorrhagic fever. J Infect Dis 1994; 170 : 746-8.