Sero logical Response to Respiratory Syncytial Virus Infection in Pediatric Patients with a Comparison to Immunofluorescence and Virus Isolation

Pilaipan Puthavathana,1 Supreeda Habanananda,2 Rachaneeporn Toncharoensook,1 Uralwan Kositanont1 and Chantapong Wasi1

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection (LRI) in infants and young children worldwide.1,2 Laboratory diagnosis of the infection can be made by several means, including rapid detection of viral antigen in nasopharyngeal secretions, virus isolation in cell culture, and detection of specific antibody in paired sera.3-6 A positive result obtained by any of the three methods provides a conclusive diagnosis. In general, however, all three methods should be employed together in order to give the highest detection rate because a case missed by one method can be discovered by another.

Previous investigations revealed that serological methods failed to diagnose some cases of RSV infection, which can be explained by the insensitivity of complement fixation (CF) and neutralization tests performed in those laboratories.7,8 Another explanation is the poor antibody response to viral antigens in infancy. Antibodies are not developed to all structural proteins in young infants after RSV infection.9 Young infants and adults are different in their capability to respond to certain viral antigens, and also in terms of immunoglobulin class and subclass response to specific antigens.10-13 Later reports on ELISA serology showed that young infants did develop specific IgA, IgG, and IgM antibodies in response to RSV infection. However, the criteria for determining positivity in those reports were different.10,12,14-17

The present study reports on the diagnosis of RSV infection by using ELISA serology to demonstrate a 4-fold rise in specific IgA, IgG and IgM antibody titres in paired sera of children hospitalized with LRI. In addition, correlation between the ELISA and other diagnostic methods (CF, indirect immunofluorescence [IF] and isolation) was examined, together with the relationship between antibody response and age.

SUMMARY: The serological response to respiratory syncytial virus (RSV) in 125 pediatric patients hospitalized with acute lower respiratory infection was investigated by enzyme linked immunosorbent assay (ELISA) for specific immunoglobulin (Ig) A, IgG, and IgM and complement fixation (CF) test. By ELISA, a 4-fold rise in IgG titre in paired sera was most commonly found, followed by a rise in IgA and IgM titres. Investigation by ELISA and CF leads to the suggestion that major CF activity against RSV antigens resides in the IgG and not the IgA and IgM classes. No case with CF activity failed to be diagnosed by ELISA. The youngest infant who could develop seroconversion was one month old, nevertheless two children older than two years could not. When the three diagnostic methods were compared, ELISA serology was the most sensitive followed by indirect immunofluorescence (IF) for antigen detection and virus isolation, respectively. ELISA could diagnose RSV infection in 45% of the study cases, whereas IF and virus isolation only diagnosed 26% and 14%, respectively. Half of the cases was diagnosed by all of the three methods together.

From the Departments of 1Microbiology and 2Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
Correspondence: Pilaipan Puthavathana, Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
MATERIALS AND METHODS

Subjects
A total of 125 pediatric patients under five years of age who were hospitalized in the Department of Pediatrics, Siriraj Hospital, for acute LRI during June 1990 to December 1991 were included in the study. These cases were completely investigated for viral etiology by the diagnostic methods of IIF, viral isolation, CF and ELISA serologies, or else they were excluded from the data analysis.

Specimen collection and processing
Clinical specimens used for investigation were nasopharyngeal secretion (NPS) and paired sera. NPS was collected in a mucus trap (Nunc, Roskilde, Denmark) in 2-3 ml of viral transport medium and transported on wet ice to the virology laboratory. The sample was thoroughly mixed and centrifuged at 300 x g for 10 minutes at 4°C. The supernatant was kept at 4°C and used for virus isolation which was done within two days, and the pellet of exfoliated cells was further washed three times to remove excess mucus. The cells were then spotted on microscopic slides, air-dried, fixed in pre-cooled acetone for 10 minutes and kept at -70°C until stained. Acute sera were collected within seven days after the onset of illness and convalescent sera were collected two to three days, and the pellet of exfoliated cells was further washed three times to remove excess mucus. The cells were then spotted on microscopic slides, air-dried, fixed in pre-cooled acetone for 10 minutes and kept at -70°C until stained. Acute sera were collected within seven days after the onset of illness and convalescent sera were collected two to three weeks later. All sera were separated from clotted blood and kept at -20°C until tested. Acute and convalescent sera were tested simultaneously in each experiment.

Indirect immunofluorescence
Slides of cell deposits were covered with bovine antiserum against RSV (Wellcome Diagnostics, Dartford, England) diluted to 1:10, they were then incubated for 30 minutes at 37°C in a moist chamber and washed in PBS and distilled water. The wet slides were drained of water, and anti-bovine immunoglobulin conjugated with fluorescein isothiocyanate (Wellcome Diagnostics) at the dilution of 1:20 was applied to the slide for another 30 minutes at 37°C. The washing step was repeated as above and was followed by counterstaining for 1 minute with Evan's blue (Sigma Chemical Co, St Louis, MO) diluted to 1:30,000.

The stained slides were examined under a fluorescence microscope (Optiphot, Nikon, Tokyo). Cell deposits containing less than 200-300 cells were discarded from the analysis. A test slide was also stained with antisera specific to respiratory viruses and represented the negative control; slides of RSV infected HEp-2 cells were used as positive controls. The immunofluorescence pattern characteristic of RSV antigen was cytoplasmic staining with rough granules.

Virus isolation
RSV was isolated in HEp-2 cell culture aged 1-3 days (American Type Cell Culture Collection, Rockville, MD). The cells were cultured in minimum essential medium (MEM; Gibco, NY) supplemented with 10% fetal bovine serum (FBS; Gibco, NY) and maintained in MEM supplemented with 2% FBS. Penicillin (200 U/ml), streptomycin (200 µg/ml), gentamicin (10 µg/ml), and amphotericin B (1 µg/ml) were added to both growth and maintenance media.

Each duplicate tube of HEp-2 cell monolayer was inoculated with 200 µl of supernatant from a NPS sample. The inoculated cultures were incubated at 37°C and observed daily for cytopathic effects (CPE) for two weeks. The culture with appearance of viral infection in 50-75% of the cell population were harvested and stained by indirect immunofluorescence for identification of RSV.

Complement fixation test
The CF protocol was modified after Schmidt and Emmons. The RSV test antigen and uninfected cell control antigen were purchased from the Behring Institute (Marburg, Germany). Guinea pig sera as the source of complement were used at a working concentration of 1.5-2 hemolytic units. The test was performed in 96 well microtititer plates as follow: the test sera were inactivated at 56°C for 30 minutes, and two-fold diluted serially in veronal buffer saline pH 7.2 starting from the dilution of 1:8 to 1:128 in a 50 µl volume. Then, 25 µl of test or control antigens together with 25 µl of complement were mixed and incubated overnight at 4°C. On the next day, 50 µl of hemolysin sensitized sheep red blood cells (RBC) were added to each reaction well and incubated at 37°C for 45 minutes before the degree of hemolysis was examined.

The CF titre was read when the highest serum dilution showed less than 50% hemolysis of the sensitized RBC; and paired sera which showed a four fold rise in antibody titre were considered to be CF positive.

Indirect enzyme linked immunosorbent assay
The procedure was modified from that described by Parrot et al. The antigen for ELISA was prepared from RSV subgroup A strain A2 and subgroup B strain IRS57 which were kindly provided by Dr Larry J Anderson, Respiratory and Enterovirus Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Controls, Atlanta, GA, USA. Briefly, HEp-2 cell cultures were infected with either one of the reference strains and incubated at 37°C until 75-100% of the cell population showed morphological changes. The culture was harvested and freeze-thawed three times followed by sonication and centrifugation at 15,000 x g for 30 minutes. The supernatant was examined for protein concentration, aliquoted and kept at -70°C until used. Uninfected HEp-2 cells processed under the same
Equal concentrations of RSV subgroups A and B antigens were mixed and adjusted to a working concentration of 100 µg/ml, as was the control antigen. Each 100 µl of the test or the control antigen was coated on the bottom of an ELISA plate (Nunc-Immuno-Plates, Polysorp, Roskilde, Denmark) and 3% bovine serum albumin in PBS pH 7.2 was used as the blocking reagent. Test serum was two-fold diluted serially by starting from a dilution of 1:20 to 1:1,280 for the IgA and IgM assays, or from dilution 1:80 to 1:5,120 for IgG assay. All serum dilutions were allowed to react with the coated antigens at 37°C for two hours in a moist chamber. Goat antihuman IgG, IgA or IgM conjugated with hors eradish peroxidase (DAKO A/S, Copenhagen, Denmark) was used as the second antibody and incubated at 37°C for 1 hour. Orthophenylene diamine dihydrochloride (DAKO A/S) was used as the chromogenic substrate. The reaction plate was read for optical density using a Titertek Multiskan spectrophotometer (Flow Laboratories, VI, USA) at the wave length of 492 nm.

Interpretation of the ELISA result

The corrected absorbance value for each serum was calculated by subtracting the OD value obtained with the control antigen from that obtained with the test antigen. Presence of specific immunoglobulin in the test serum was indicated when the corrected absorbance value of ≥ 0.2. The antibody titre was read when the highest serum dilution showed the corrected absorbance value of ≥ 0.2, and the sera test for specific IgM contained no rheumatoid factor as examined by agglutination test (Rapi Tex®-RF, Behringwerke AG, Germany). RSV infection was diagnosed when a 4-fold rise in titre of any specific immunoglobulin class in paired sera was detected.

RESULTS

Immunoglobulin class response to RSV infection

Paired sera from a total of 125 pediatric patients were studied, and a 4-fold rise in immunoglobulin titre was found in 56 (45%) cases by ELISA and 11 (9%) by CF (Table 1). Thirty-one (25%), 23 (18%) and 2 (1.6%) cases developed a rise in titre with one, two and all three immunoglobulin class responses, respectively. Serological response with the IgG class was the most common, followed by IgA and IgM responses, i.e., 34, 21 and 12%, respectively. All cases with seroconversion by the CF test also seroconverted by ELISA. Noticeably, all of these CF-positive cases gave IgG seroconversion, while CF antibody

<table>
<thead>
<tr>
<th>Ig class response</th>
<th>Number of cases (%) diagnosed by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ELISA</td>
</tr>
<tr>
<td>IgA only</td>
<td>4</td>
</tr>
<tr>
<td>IgG only</td>
<td>18</td>
</tr>
<tr>
<td>IgM only</td>
<td>9</td>
</tr>
<tr>
<td>IgA and IgG</td>
<td>19</td>
</tr>
<tr>
<td>IgA and IgM</td>
<td>1</td>
</tr>
<tr>
<td>IgG and IgM</td>
<td>3</td>
</tr>
<tr>
<td>IgA and IgG and IgM</td>
<td>2</td>
</tr>
</tbody>
</table>

Total positive cases 56 (44.8) 11 (8.8)

Table 1. Serological response to RSV infection as determined by ELISA and CF test (N = 125)

<table>
<thead>
<tr>
<th>Diagnostic methods</th>
<th>Numbers of RSV cases (%) diagnosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIF only</td>
<td>4</td>
</tr>
<tr>
<td>Isolation only</td>
<td>1</td>
</tr>
<tr>
<td>ELISA only</td>
<td>26</td>
</tr>
<tr>
<td>IIF and isolation</td>
<td>2</td>
</tr>
<tr>
<td>IIF and ELISA</td>
<td>16</td>
</tr>
<tr>
<td>Isolation and ELISA</td>
<td>4</td>
</tr>
<tr>
<td>IIF and isolation and ELISA</td>
<td>10</td>
</tr>
</tbody>
</table>

Total cases diagnosed by all test 63 (50.4)
Total cases diagnosed by IIF 32 (25.6)
Total cases diagnosed by isolation 17 (13.6)
Total cases diagnosed by ELISA 56 (44.8)

Table 2. Diagnosis of RSV infection by IIF, isolation and ELISA techniques (N = 125)
was not found in cases which exhibited only a rise in IgA or IgM titre. The results indicate that major CF activity in RSV infection resided in the IgG fraction.

Diagnosis of RSV infection by IIF, viral isolation and ELISA

The combination of IIF, viral isolation and ELISA techniques was able to diagnose RSV infection in 63 (50%) of the 125 study cases (Table 2). ELISA diagnosed 89% (56 of 63) of the RSV infected cases and, among the three diagnostic methods, was the most sensitive, followed by IIF and viral isolation, respectively.

Relationship between age and serological response

There were 63 RSV infected cases diagnosed by the combination of IIF, viral isolation and ELISA serology. ELISA alone failed to diagnose 7 of them. Although very young infants can develop specific antibody responses, their capability to do so seems to increase after six months of age (Table 3). On the other hand, two cases who were unable to develop antibody responses were in the age-group of 2-3 years.

DISCUSSION

It has been previously shown that RSV infection in young children can stimulate the production of specific IgA, IgG and IgM. These immunoglobulins are detectable within a few weeks, and remain so for at least a few months to one year after a single RSV infection. However, RSV reinfection can occur within two months after the primary infection. This finding implies that the presence of specific IgA, IgG and IgM in a single serum cannot be used as a marker for diagnosis of current RSV infection. Our study thus diagnosed the infection by relying on a 4-fold rise in RSV antibody titer in paired sera.

The present study has revealed that among 56 RSV infected children who developed seroconversion, 31 (55%) produced one class of specific immunoglobulin, 23 (41%) cases produced two classes, and only 2 (3.6%) cases responded with three classes of immunoglobulin (Table 1). IgG was the most common immunoglobulin detected followed by IgA and IgM. The lack of IgM antibody response in young infants has been noted. Our findings on classes of immunoglobulin response to RSV infection are also similar to those reported by Muerman.

We could not exclude a maternal origin of part of specific IgG present in the test serum. However, its presence would not affect our interpretation which is based on seroconversion of specific immunoglobulin classes in paired sera. It seems that the immunoglobulin class which plays the major role in CF activity is IgG, since it was found in all cases with positive CF test, whereas the cases with IgA or IgM only did not possess CF activity. It is not surprising to see that IgA cannot fix the complement but IgM, which has been known to have the best such activity, could not fix complement in our system. However, it is also shown that the CF test detects only specific IgG for most virus antigens, but for other microbial antigens it may detect both specific IgM and IgG.

Among the three diagnostic methods: IIF, viral isolation and ELISA serology, the latter was the most sensitive for RSV diagnosis. ELISA alone diagnosed about 45% of the study population, whereas the three methods combined diagnosed 50%. We previously investigated viral etiology in acute upper and lower respiratory tract infections in other hospitals and found that the CF test is the least sensitive test when compared with IIF and viral isolation; CF diagnosed RSV infection in 9% of the study population, while the three methods combined diagnosed 19%.

Using the sensitive ELISA test, we demonstrated that most young infants can develop antibody responses after RSV infection. The youngest case showing seroconversion in our study was one month old. This case was diagnosed positive by IIF and viral isolation and by seroconversion of specific IgA only. Immunological potential in this particular child may be stronger than the others; or the rapid waning of the anti-RSV maternal antibody will diminish the suppressor effect on the child's immunological response, and thus lead to seroconversion. These explanations also seem to be hold true for older children in general, since more than 90% of the infected cases aged 6-17 months underwent seroconversion. However, failure to develop seroconversion was
found in two cases of older than two years of age.

The capability of very young infants to develop serological response against RSV infection in our study suggested that serodiagnosis is more sensitive than other diagnostic methods if an appropriate serological test system is used which is able to detect all specific immunoglobulin classes. However, its limitation is the requirement of paired blood samples which will delay diagnosis.

ACKNOWLEDGEMENTS

This work was supported by Siriraj-China Medical Board Research Grant No. 75-348-178.

REFERENCES