Significant Differences Between Plasma HIV-1 RNA Assays in HIV-1 Subtype E Infected Patients Treated with Antiretroviral Therapy

Kiat Ruxrunghath1,2, Sasiwimol Ubolyam1,2, Elly A Hassink1,3, Chaiwat Ungsedeaphand1, Eugene Kroon1,3, Chris Duncombe1,2, Gerrit Jan Weverling7, Somboon Nookai1, Joep Lange2,3, David Cooper1,4 and Praphan Phanuphak1,2

Initial CD4+ T-lymphocyte counts and plasma HIV-1 RNA are independently strong predictors of survival both in HIV-1 subtype B and non-B infected populations. More importantly, both HIV-1 RNA plasma levels and CD4+ T-lymphocyte counts are the major markers for initiating and monitoring Antiretroviral (ARV) therapy. Thus plasma HIV-1 RNA assays should be accurate and reproducible. Of note, different plasma HIV-1 RNA assays perform differently even in HIV-1 subtype B infection, which is the bases for the development of most quantitative nucleic acid-based assays.1,2,8 Amplicor HIV-1 Monitor test version 1.0 values are consistently 2-2.5 folds higher than Quantiplex bDNA 2.0.1,2 Moreover, it is of importance for the international use that the assays detect the various HIV subtypes. Undetected viral subtypes lead to understimation of the viral loads and therefore to suboptimal treatment. In Thailand the predominant HIV subtype is E.5,11 In fact, all isolates of subtype E that have been sequenced to date represent mosaic genomes5 and are currently named CRF01_AE. The cytoplasmic domain of gp 41 is from subtype A.6-11 The HIV regulatory regions and the long terminal repeat appear to be A/E mosaic and mainly A-associated in gag and pol.9,11 The capacity for HIV subtypes to recombine or otherwise generate mosaic forms, such as the A/E mosaic, may affect the reliability of the commercially available assays. Most of the commercial plasma HIV-1 RNA assays were developed when little sequence information on non-B HIV-1 subtypes was available. Several studies have shown that commercial plasma HIV-1 RNA assays vary in their ability to quantify different HIV-1 subtypes.11,14

The first generation Amplicor HIV-1 Monitor test did not ac-

SUMMARY A total of 72 HIV-1 infected Thai patients treated with didanosine (ddl) or stavudine (d4T) plus ddl at the time of interim analysis were analyzed. Sixty patients (83%) carried subtype E documented by HIV-1 V3 serotyping. HIV-1 RNA levels were measured using three commercial viral load assays. At baseline (n = 57), Quantiplex 2.0 and NucliSens 2.0 showed mean log_{10} HIV-1 RNA of 0.7 log_{10} or 5 fold lower than Amplicor 1.5 (mean 4.29 versus 5.0 log_{10}, respectively, p < 0.001). At week 20 of treatment (n = 29), HIV-1 RNA levels were detected in 55.2%, 31%, and 33.5% of subjects tested by Amplicor 1.5, Quantiplex 2.0, and NucliSens 2.0, respectively. In conclusion; plasma HIV-1 RNA analyses showed comparable values with Quantiplex 2.0 and NucliSens 2.0 assays. In contrast, Amplicor 1.5 resulted in approximately 5 folds higher HIV-1 RNA levels and a 25% higher rate of detection of plasma HIV-1 RNA as compared to the other two assays. As the current goal of therapy is to suppress plasma viral load below the detection limit of the assays, the significant differences between the assays may influence antiretroviral efficacy evaluation and management.

From the 1The Netherlands, Australia Thailand Research Collaboration (HIV-NAT), Thai Red Cross AIDS Research Centre, 2Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 3National AIDS Therapy Evaluation Centre, Department of Internal Medicine, University of Amsterdam, The Netherlands, 4National Centre for HIV Epidemiology and Clinical Research, University of New South Wales, Sydney. Correspondence: Kiat Ruxrunghath.
accurately quantify plasma HIV-1 RNA levels in individuals infected with subtypes A, E, F, G, and H. The addition of a new primer set, designed for non-B HIV-1 subtypes, to the Amplicor HIV-1 Monitor assay v1.0 significantly improved the efficiency of quantification for these subtypes. Nevertheless, most of the plasma HIV-1 RNA assay comparisons in non-B subtypes were cross-sectional studies. We investigated the abilities and characteristics of 3 different plasma HIV-1 RNA quantification test kits, i.e., Quantiplex bDNA version 2.0, NucliSens NASBA version 2, and Amplicor HIV-1 Monitor test version 1.5 (added-in primer set) in a prospective Thai cohort, predominantly infected with HIV-1 subtype E, by comparing plasma HIV-1 RNA levels before and after initiation therapy with didanosine (ddI) or didanosine and stavudine (d4T).

MATERIALS AND METHODS

Patient population

For this study, plasma samples of patients who provided informed consent and participated in HIVNAT 002 were used. All patients were recruited from the Thai Red Cross Society's Anonymous STD/HIV screening clinic and the HIV outpatient immune clinic of King Chulalongkorn Memorial Hospital, Bangkok, Thailand. In HIV-NAT 002, a randomized open-label dose-ranging study to assess the efficacy and optimal dosing schedule of didanosine (ddI) and stavudine (d4T), HIV-infected, treatment-naive Thai patients were enrolled. A safety interim analysis of the HIV-NAT 002 trial was done when the first patient reached week 24. Plasma samples were collected from all patients before therapy (week 0) and after initiation of therapy at weeks 4, 8, 16, and 20 up until the time for interim analysis was reached. Whole blood was collected into blood collection tubes containing ethylenediamine tetra-acetic acid (EDTA) anticoagulant. Within 6 hours of collection, the plasma was separated by centrifugation at 400 x g for 10 minutes. Plasma samples were immediately stored at -70°C until processing.

HIV-1 serotyping

Of all patients in HIVNAT 002, HIV-1 subtypes were determined by HIV-1 V3 peptide-based enzyme-linked immunosorbent assays (ELISA) as previously described. Three different HIV-1 V3 loop peptides: TSSITPGQVYRTGD (subtype E, residues 309-324), KSIHLGPGQAWTTQ (subtype B, residues 309-324), and YNKRRKIHIGPGRFTTKKN (subtype Bm, residues 305-324) were used for the assays.

HIV-RNA quantification

Only HIV-1 subtype E infected samples, as determined by HIV-1 serotyping, were used for the comparison between the three plasma HIV-1 RNA assays. At the time of the interim analysis of HIVNAT 002 trial, evaluable plasma samples for all three assays at week 0, 4, 8, 16, and 20 were 57, 50, 49, 39, and 29, respectively. A separate aliquot of plasma sample from each individual at each visit was analyzed for plasma HIV-1 RNA by different HIV-RNA quantification test kits, i.e., Amplicor HIV-1 Monitor test 1.5, Quantiplex bDNA 2.0, and NucliSens NASBA 2.0, according to the manufacturers’ instructions. Each of the tests has a dynamic range of 400-750,000; 500-1,000,000; and 400-10,000,000 HIV-1 RNA copies/ml, respectively. All samples were analyzed in a blinded fashion by the same person in the Cellular Immunology laboratory of Department of Medicine, Faculty of Medicine, Chulalongkorn University. These samples had been stored for less than 9 months at -70°C.

Statistical analysis

For the analysis, data of only subtype E infected patients and samples tested with all three assays at each visit were used. Data are described as means (standard deviations). Spearman’s Rho correlation coefficients for non-parametric data were calculated to describe the relation between the assays. Difference between assays in log10 plasma HIV-1 RNA and percentages of undetectable patients were tested by paired t-tests and Chi-Square test, respectively. A p value < 0.05 was considered as significant.

RESULTS

Three hundred and nineteen blood samples from 72 participants in HIV-NAT 002 were obtained. HIV-1 subtypes were E in 60 (83%) and both E and Bm in 5 (7%) patients. In 7 (10%) patients the HIV-1 subtype could not be identified by the HIV-1 V3 peptide-based serotypic assays. The baseline characteristics of the patients are listed in Table 1. Prior to commencement of the antiretroviral therapy the correlation coefficients between the three assays varied from 0.78 to 0.85 (p < 0.001) (Fig. 1). Among subjects infected with HIV-1 subtype E (n = 57), the corresponding mean ± SD log10 HIV-1 RNA levels were 5.00 ± 0.63, 4.29 ± 0.72, and 4.29 ± 0.76 with AmpliFicor HIV-1 Monitor test 1.5 assay, Quantiplex bDNA 2.0, and NucliSens NASBA 2.0, respectively.

Plasma HIV-1 RNA levels measured with the AmpliFicor HIV-1 Monitor test 1.5 assay were signifi-
cantly higher than measured with the Quantiplex bDNA 2.0 (mean difference 0.71, 95% CI: 0.62 to 0.80) and NucliSens NASBA 2.0 (mean difference 0.71, 95% CI: 0.60 to 0.83). The mean difference of 0.70 log_{10} of HIV-1 RNA copies/ml is approximately a 5-fold difference. Viral load measurements with Quantiplex bDNA 2.0 and NucliSens v2.0 were comparable (mean difference 0.01, 95% CI: -0.11 to 0.14).

The percentages of patients with undetectable plasma HIV-1 RNA at baseline (n = 57) were 0%, 5.3%, and 3.5% with Amplicor HIV-1 Monitor test 1.5, Quantiplex bDNA 2.0, and NucliSens NASBA 2.0, respectively. At week 20 of antiretroviral therapy (n = 29), the percentages of patients with undetectable plasma HIV-1 RNA with the Amplicor HIV-1 Monitor test 1.5, Quantiplex bDNA 2.0, and NucliSens NASBA 2.0 were 44.8%, 69%, and 66.5%, respectively (Table 2). Both, before and after treatment, the Amplicor HIV-1 Monitor test 1.5 yielded consistently higher plasma HIV-1 RNA results than Quantiplex bDNA 2.0 and NucliSens NASBA 2.0 assays (Fig. 2). The mean log reduction of plasma HIV-1 RNA from baseline at week 20 after treatment determined by Amplicor HIV-1 Monitor test 1.5, Quantiplex bDNA 2.0, and NucliSens NASBA 2.0 was 1.71, 1.14, and 1.28 log_{10} copies/ml, respectively (p < 0.001, Amplicor 1.5 compared to the other tests).

DISCUSSION

In this HIV-1 subtype E infected cohort, the prospective com-

Table 1 Baseline characteristics of the study population (N = 72)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>31 (7.6)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>34 (47%)</td>
</tr>
<tr>
<td>female</td>
<td>38 (53%)</td>
</tr>
<tr>
<td>CDC stage, n (%)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>47 (65%)</td>
</tr>
<tr>
<td>B</td>
<td>25 (35%)</td>
</tr>
<tr>
<td>CD4 count, cells/ml median (IQR)</td>
<td>253 [208-302]</td>
</tr>
<tr>
<td>Viral subtype(s), n (%)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>80 (63%)</td>
</tr>
<tr>
<td>E + BMM</td>
<td>9 (7%)</td>
</tr>
<tr>
<td>Unknown by serotyping</td>
<td>7 (10%)</td>
</tr>
</tbody>
</table>

Table 2 Characteristics of the assays, percentages undetectable and log_{10} viral load at week 0, week 8, and week 20 of the treatment (Based on the same evaluable subjects for all 3 assays at each visit)

<table>
<thead>
<tr>
<th></th>
<th>Amplicor 1.5</th>
<th>Quantiplex 2.0</th>
<th>NucliSens 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic range of the assay (copies/ml)</td>
<td>400-750,000</td>
<td>500-1,000,000</td>
<td>400-10,000,000</td>
</tr>
<tr>
<td>Week 0 (evaluable samples = 57)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% undetectable</td>
<td>0.0 %</td>
<td>5.3%</td>
<td>3.5%</td>
</tr>
<tr>
<td>\log_{10} copies/ml, mean ± SD</td>
<td>5.00 ± 0.63</td>
<td>4.29 ± 0.72</td>
<td>4.29 ± 0.76</td>
</tr>
<tr>
<td>Week 8 (evaluable subjects = 53)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% undetectable</td>
<td>30.6%</td>
<td>73.5%</td>
<td>69.4%</td>
</tr>
<tr>
<td>Week 20 (evaluable subjects = 29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% undetectable</td>
<td>44.8%</td>
<td>69%</td>
<td>66.5%</td>
</tr>
<tr>
<td>\log_{10} copies/ml, mean ± SD</td>
<td>3.27 ± 0.88</td>
<td>3.06 ± 0.70</td>
<td>2.95 ± 0.64</td>
</tr>
</tbody>
</table>

1. Difference between Amplicor and Quantiplex < 0.001
2. Difference between Amplicor and NucliSens < 0.001
3. Difference between Quantiplex and NucliSens is not significant

Difference between assays in \log_{10} viral loads and percentages of undetectable patients were tested by paired t-tests and Chi-Square test, respectively.
parison of three assays for the determination of HIV-1 RNA in plasma demonstrated that the viral loads differ depending on the choice of assay. Amplicor HIV-1 Monitor test 1.5 with the added primer set, resulted in consistently and significantly higher plasma HIV-1 RNA levels and higher rates of detectable patients than Quantiplex bDNA 2.0 and NucliSens NASBA 2.0 assays, before and after initiation of therapy. The difference was much higher than those reported in studies performed with HIV-1 subtype B samples.1,2,15,16 In subtype B studies, Amplicor HIV-1 Monitor test v1.0 values are consistently 2 to 2.5-fold or 0.3-0.4 log\textsubscript{10} higher than Quantiplex bDNA 2.0 values.1,2 Whereas, our results showed that Amplicor HIV-1 Monitor assay v1.5 yields a 0.7 log\textsubscript{10} higher level of plasma HIV-1 RNA or an approximately fivefold greater mean amount of copies/ml compared to Quantiplex bDNA 2.0 and NucliSens NASBA 2.0 assays. After 20 weeks of nucleoside therapy, the proportion of patients with plasma HIV-1 RNA levels below the limit of detection measured with Quantiplex bDNA 2.0 or NucliSens NASBA 2.0 assays was approximately 1.5 folds higher than measured with Amplicor HIV-1 Monitor test 1.5 (67\% and 69\% versus 44\%, respectively (Table 2 and Fig. 2). The Quantiplex bDNA 2.0 and NucliSens NASBA 2.0 assays were comparable, both in plasma HIV-1 RNA levels and percentages of samples with undetectable virus. However, the correlation coefficients between the three assays varied significantly from 0.78 to 0.87 (p < 0.001). Our study supports the results of Segondy et al.22 that a valid comparison of the virological efficacies obtained with different antiretroviral drug regimens requires the use of the same viral load quantitation procedure.

Fig. 1 The correlation of three commercial plasma HIV-1 RNA assays in patients infected with subtype E (N = 60).
Based on 20 subtype E infected plasma specimens, Parekh et al.23 showed that the correlation among different assays, especially between Quantiplex bDNA 2.0/NucliSens NASBA and Amplicor HIV-1 Monitor v1.0 versus NucliSens NASBA, was poor. The mean log\textsubscript{10} difference for subtype E specimens was 0.4 between Quantiplex bDNA 2.0 and Amplicor HIV-1 Monitor v1.0 and only 0.08 between Quantiplex bDNA 2.0 and NucliSens.23 This indicates that the less sensitive Amplicor HIV-1 Monitor v1.0 assay for subtype E resulted in a mean log\textsubscript{10} difference of 0.4 or approximately 2.5 folds higher than with Quan-tiplex bDNA 2.0. Triques et al.16,24 found that for samples infected with subtypes A and E, Amplicor HIV-1 Monitor 1.5 yielded a significant increase of more than 1 log\textsubscript{10} plasma HIV-1 RNA copies/ml (approximately 10 fold) compared to version 1.0 and 1.5.16,24
Currently several more sensitive plasma HIV-1 RNA assays, some of which are commercially available (detection limit of 50 copies/ml) such as the Roche Amplicor Ultrasensitive assay and the Bayer Quantiplex HIV-1 RNA 3.0 (bDNA 3.0), are being used to monitor HIV-1 infected individuals on highly active anti-retroviral therapy (HAART). In a U.S. cohort, Elbeik et al. found that bDNA 3.0 was approximately 2 times more sensitive than Quantiplex bDNA 2.0 and was comparable to the Roche Amplicor Ultrasensitive assay. In a study of 127 plasma samples from 57 Swiss patients infected with HIV-1 subtypes A, B, C and E, Schmid et al. also demonstrated that the Amplicor HIV-1 Monitor Test 1.5 and the Bayer bDNA 3.0 assay were comparable. Based on the Swiss HIV cohort study, Amplicor HIV-1 monitor 1.5 appears to be the most sensitive assay compared to the ultra-sensitive reverse transcriptase assay, p24 antigen enzyme immunoassay, NucliSens NASBA, and Quantiplex bDNA 2.0 in persons infected with various subtypes. A study in Greece (HIV-1 subtype was not specified) showed that results generated with Quantiplex bDNA 3.0 or with Roche Amplicor Ultrasensitive 1.5 were approximately twofold greater than those generated with Quantiplex bDNA 2.0. In contrast, Quantiplex bDNA 3.0 and Roche Amplicor Ultrasensitive 1.5 measurements were highly correlated (r = 0.96) and in good agreement (92.7%).

However, another study found that despite the improvements made to both the Roche Amplicor and the Chiron Quantiplex assays discordant results were detected between the two assays in 25.7% of cases, occurring with samples from all subtypes (A-E).

In conclusion, our results confirm that commercial plasma HIV-1 RNA assays vary in their ability to quantify different HIV-1 subtypes. Countries with a high prevalence of HIV-1 subtype E (or recently called CRF01_AE) such as Thailand, the Amplicor HIV-1 Monitor 1.5 resulted in an approximately fivelfold higher mean plasma HIV-1 RNA level compared to Quantiplex bDNA 2.0 and NucliSens NASBA 2.0. Nonetheless, some studies suggest that Roche Amplicor HIV-1 Monitor 1.5 and the newest Quantiplex bDNA version 3.0 generated comparable results in non-B subtype infections including E. Thus, it is important to evaluate the performance of each assay before use in the quantification of plasma samples from patients infected with nonsubtype B HIV-1 RNA. More importantly, beside the effort to improve the sensitivity of viral load assays against various HIV-1 subtypes, there is also the urgent need to make the tests accessible in harmony with the current effort of making HAART widely accessible to patients worldwide.

ACKNOWLEDGMENTS

Amplicor HIV-1 Monitor tests v1.5 were kindly provided by Shirley Kwok of Roche Diagnostic Systems Inc., Branchburg, NJ, USA; Quantiplex bDNA 2.0 was kindly provided by Boon G. Law of Chiron Corp., Emeryville, CA, USA; and NucliSens NASBA tests 2.0 were kindly provided by Rene van Erp, Organon Teknika, Boxtel, the Netherlands.

REFERENCES