An Antigen Detection Assay for Diagnosing Filariasis

Sirichit Wongkamchai¹, Wej Chochoot², Achariya Jitpuckdee³, Saravud Suvannadabba⁴, Sumart Loymak⁵, Yuwaporn Sakolvaree⁶, Pramuan Tapchaisri⁵ and Wanpen Chaicumpa⁵

Lymphatic filariasis, commonly known as elephantiasis, is a profoundly disfiguring disease that has a major social and economic impact. The disease is endemic in Asia, Africa, the Western Pacific and the Americas (http://www.who.int/ctd). It is caused by filarial nematodes, namely Wuchereria bancrofti, Brugia malayi and Brugia timori.¹ In Thailand, two species of the causative filarial worms have been reported. Bancroftian filariasis is endemic in a limited area in the western part of the country while cases of brugian filariasis caused by B. malayi are found in southern Thailand.² The infection is transmitted by both zoonotic and non-zoonotic mosquitoes, e.g. Mansonia spp., Anopheles spp. and Culex spp.³

Filarial infection is initially asymptomatic when microfilariaemia (M) may or may not be present⁴ (http://www.who.int/ctd). Clinical manifestations of filariasis require repeated inoculations of the parasite’s infective larvae through vector bites in order for the parasite to successfully mature to adult worms, which reside in the lymphatic vessels and nodes and mate. Female worms may produce thousands of microfilariae per day. Adult filarial parasites have a life span of 10 years or more in their hosts⁵ (http://www.who.int/ctd). The acute stage involves episodes of acute inflammation of lymphatic vessels and

SUMMARY In this study we examined the diagnostic potential of monoclonal antibodies (MAB) reactive to antigens of adult Brugia malayi, their microfilariae and antigen of Dirofilaria immitis. The MAB of clone 17E10, which were of IgM isotype, reacted to the inner cuticles and internal content of both male and female worms and also to the sheath and internal content of microfilariae in utero. However, these MAB did not react to the sheath of blood circulating microfilariae. The MAB 17E10 produced a smear pattern between 37 to > 200 kDa in the Western blot analysis against a SDS-PAGE separated extract of B. malayi. The epitopes were non-protein in nature as indicated by their resistance to proteinase-K treatment. The MAB 17E10 were applied in a sandwich ELISA to detect filarial antigen in the Buffy coat and plasma of patients. We tested patients with different clinical manifestations of brugian filariasis, i.e. microfilariaemia (M), lymphangitis (L) and elephantiasis (E), as well as non-symptomatic inhabitants of a filariasis endemic area (NE), and compared them to samples from non-symptomatic inhabitants of disease non-endemic areas (NNE). It was found that 22 of 31 (70.9%) of M, 7 of 13 (53.8%) of L, 2 of 14 (14.2%) of E, 10 of 100 (10.0%) of NE and none (0%) of the NNE were positive for antigenaemia. The assay was also positive in 14 of 15 (93.3%) blood samples from B. malayi microfilaremic cats and in 7 of 7 (100%) blood samples of Dirofilaria immitis microfilaremic dogs. The so-developed test has a high potential for routine diagnosis of active filariasis, for epidemiological studies in both humans and reservoir animals and for monitoring treatment efficacy.

From the ¹Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, ²Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, ³Filaria Division, Ministry of Public Health, Nonthaburi, ⁴Filaria Project, Phikutthong Royal Development Center, Narathiwat, ⁵Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathumthani, Thailand.
Correspondence: Wanpen Chaicumpa
nodes (lymphangitis, L) with fever and intermittent swelling of limbs and the scrotal sac, \(\text{http://www.who.int/ctd} \). The prolonged presence of maturing larvae and adult worms causes the lymphatic vessels to dilate and later thicken with cellular infiltration which results in a restriction of the lymph flow, causing an accumulation of fluid in the skin, subcutaneous tissues and body spaces, and eventually lead to swollen legs and genitalia known as elephantiasis (E). At this time, microfilariae have usually disappeared from the bloodstream of the patient. 8 But elephantiasis is not an inevitable consequence of chronic filariasis (http://www.who.int/ctd).

Until recently, diagnosis of filarial infection depended on the direct demonstration of the parasite (almost always microfilariae) in the blood or skin biopsies using relatively cumbersome techniques and having to take into account the periodicity (nocturnal or diurnal) of microfilarial presentation in the blood (http://www.who.int/ctd). Alternative methods based on the detection of antibodies failed to distinguish between active and past infections and were insensitive due to immune complex formation. 19 Moreover, antibody detection assays showed low specificity due to cross-reactivity of the ill-defined antigens used in the assays with antibodies incited by other parasites (http://www.filaria.org). Circulating filarial antigen (CFA) detection should now be regarded as the “gold standard” for diagnosing acute/current filariasis. At present, two versions of antigen detection assays are available for the diagnosis of bancroftian filariasis in humans and for canine dirofilariasis. One is based on ELISA technology that yields semi-quantitative results 11-13 (http://www.who.int/ctd) and another one is based on a simple immunochromatographic test which yields only positive or negative answers. 13-14 However, no antigen detection assay has been successfully developed as yet for the routine diagnosis of brugian filariasis.

In this communication, monoclonal antibodies reactive to B. malayi and D. immitis antigens were produced. They were used in a monoclonal antibody-based antigen detection assay for the diagnosis of current brugian filariasis using plasma plus Buffy coat as target specimen. The assay could also detect antigens of Dirofilaria immitis in animal samples. The details of the experiments for the assay development form the basis of this research article.

MATERIALS AND METHODS

Preparation of filarial antigen

A B. malayi infected cat with a high density of microfilariae in the blood was used as source of filarial antigen. The species of microfilariae were identified by histochemical staining for acid phosphatase activity using the method established by Chalifoux et al. 15 Four to five day old female Aedes togoi (Nomsao strain) mosquitoes, which are susceptible to B. malayi infection, 16 were allowed to feed on the blood of the anaesthetised microfilaremic cat. Infective third stage B. malayi larvae were recovered by dissection from the mosquitoes fourteen days after they had fed on the cat’s blood. The live infective larvae were injected intra-peritoneally into young adult Mongolian gerbils (Meriones unguiculatus). Four months thereafter, adult B. malayi and their microfilariae were harvested from the infected gerbils by means of peritoneal washing with normal saline solution (NSS). Adult worms were picked individually using a needle, and washed thoroughly with distilled water. The microfilariae in the NSS were recovered by filtering the peritoneal lavage through a membrane filter (8 μm pore size) connected to a suction flask. The microfilariae retained on the filter membrane were washed alternately with NSS and distilled water in order to get rid of blood cells and other debris. The membrane filter was then placed in a petri-dish which contained NSS. The microfilariae moved out from the membrane into the NSS which was then centrifuged at 10,000 x g at room temperature for 20 minutes. The pellets containing microfilariae were resuspended in a small volume of distilled water. Adult B. malayi and their microfilariae were ground separately in distilled water containing protease inhibitors (0.1 M PMSF, 0.1 M TPCK and 0.1 M EDTA). The preparations were individually subjected 10 times to sonication at 20 kHz per second (Labline Ultratip, Melrose Park, USA) at 4°C for 5 minutes and dialyzed against distilled water at 4°C overnight. The protein contents and the dry weights of the preparations were determined. 17 Homogenates of adult worms and microfilariae were obtained and kept at -20°C in small aliquots until use.

Preparation of heterologous antigens

Heterologous antigens were prepared from various parasites including nematodes, cestodes, trem-
Homogenates of all parasites were prepared as for the adult *B. malayi* and their microfilariae.

Human specimens

Two sets of human specimens were obtained from May 1999 to August 2002 from various parts of Thailand. Oral informed consent was obtained from each subject before collecting the specimen.

The first set of specimens were plasma samples collected during May 1999 to December 2000 from 104 inhabitants of various districts of Thailand; i.e., Sugai-Padi, Yi-Ngo, Cho-Ai-Rong, Tak Bai and Sugai-Kokol of Narathiwat Province in southern Thailand, which are endemic areas of brugian filariasis. The samples were classified into four groups: group 1 consisting of 26 microfilaremic individuals (M1); group 2 consisting of 24 individuals with lymphangitis (L1); group 3 consisting of 14 individuals with elephantiasis (E1); and group 4 consisting of 40 normal inhabitants residing in the filariasis endemic areas (NE1). Examination of stool samples of all included subjects of the filaremic areas by direct stool smear and formalin-ether concentration method revealed that most of them harboured mixed intestinal parasites, i.e., *Ascaris, Trichurus*, hookworms, *Entamoeba histolytica*, *E. coli*, *Giardia lamblia* and/or *Strongyloides stercoralis*. Plasma of 40 normal individuals of a filariasis non-endemic area (Bangkok) was collected as negative control (NNE1). Their stool samples at the time of the blood sample collection did not contain any intestinal parasites (group 5). Aliquots of the first set of samples were used in the antigen detection assay either directly or after treatment with di-sodium ethylene diamine tetraacetic acid (EDTA) or sodium dodecyl sulphate and Triton X-106.

The second set of specimens consisted of finger prick blood samples collected into EDTA hematocrit tubes from 159 inhabitants of the same brugian filariasis endemic areas as for the first set during October 2001 to August 2002. They were also divided into four groups: group 1 consisting of 31 asymptomatic microfilaremic individuals (M2); group 2 consisting of 13 individuals with lymphangitis (L2); group 3 consisting of 14 individuals with elephantiasis (E2); and group 4 consisting of 100 normal individuals living in the brugian endemic areas (NE2) (different subjects from NE1). Similar intestinal parasites to those of the first set were found in the stools of the second set of subjects. Blood samples were also collected from 40 normal, parasite-free individuals of a filariasis non-endemic area, i.e., Bangkok (NNE2) (different subjects from NNE1). Three hematocrit tubes (about 180 µl) of blood samples of each subject were centrifuged and the Buffy coat and about 50-60 µl of plasma were collected together in an Eppendorf tube. Fifty microliters of distilled water, 25 µl of 10% SDS and 25 µl of 2% Triton X-100 solution were added to the sample tube, mixed and boiled for 20 minutes. These samples were subsequently used in the sandwich ELISA for antigen detection.

Dog samples

Blood samples were collected from 12 Bangkok dogs into EDTA hematocrit tubes. Seven dogs were positive for *Dirofilaria immitis* microfilariae, 5 dogs were healthy and parasite free. All samples were processed similarly to the second set of human samples.

Production of hybridomas secreting specific monoclonal antibodies (MAb) to filarial antigen

Four BALB/c mice, 6 weeks old at the beginning of the immunization, were individually immunized intraperitoneally with 100 µg of adult *B. malayi* homogenate emulsified in complete Freund’s adjuvant. Each mouse was given three booster doses containing 200 µg of the same antigen in incomplete Freund’s adjuvant at 14-day intervals. Seven days after the last booster dose, the serum antibody titers against the homologous antigen were determined by an indirect ELISA. The mouse with the highest serum antibody titer was used as the splenocyte donor during the cell hybridization for hybridoma production. The mouse was given an intravenous booster of 200 µg of the same antigen. Three days after the intravenous booster, the selected mouse was bled and the serum collected as an immune serum (IS). Splenocytes of the mouse were hybridized with P3x-63-Ag8.653 non-Ig secreting myeloma cells. The spent culture media of all wells con-
Table 1 Parasites of which the antigens were used for checking the cross-reactivity of the monoclonal antibodies

<table>
<thead>
<tr>
<th>Name of parasite</th>
<th>Developmental stage</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Larva</td>
</tr>
<tr>
<td>Nematodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Angiostrongylus cantonensis</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>2. Ascaris lumbricoides</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>3. Capillaria philippinensis</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>4. Dirofilaria immitis</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>5. Human hookworms</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>6. Gnathostoma spinigerum</td>
<td>-</td>
<td>3(^{rd}) stage larvae</td>
</tr>
<tr>
<td>7. Strongyloides stercoralis</td>
<td>-</td>
<td>Filariform larvae</td>
</tr>
<tr>
<td>8. Trichinella spiralis</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>9. Toxocara canis</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Cestodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Hymenolepis nana</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>11. Taenia saginata</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>12. Echinococcus granulosus</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>13. Cysticercus cellulosae</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Trematodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver flukes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Opisthorchis viverrini</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>15. Fasciola gigantica</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Lung fluke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Paragonimus heterotremus</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Medium sized intestinal flukes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Echinostoma ilocanum</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>18. Echinostoma malayanum</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>19. Echinostoma revolutum</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Minute intestinal flukes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Haplorchis taijui</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Blood flukes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Schistosoma japonicum</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>22. Schistosoma mansoni</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>23. Schistosoma mekongi</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Entamoeba histolytica</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>25. Plasmodium falciparum</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>26. Plasmodium vivax</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>27. Toxoplasma tachyzoites</td>
<td>✓</td>
<td>-</td>
</tr>
</tbody>
</table>
taining growing hybrids were screened for antibodies against the homologous antigen by an indirect ELISA. Cells from antibody positive wells were cloned using the limiting dilution method. Spent media of wells which contained single clones were rechecked for antibodies to the homologous antigen and for cross-reacting antibodies against the panel of heterologous antigens prepared from other parasites listed in Table 1 by indirect ELISA. Selected cells were subjected to expanded growth in a serum-free medium. The spent culture media of individual clones (hybridomas) at their maximum growth were collected, dialyzed against distilled water and checked by the indirect ELISA for antibody titers and immunoglobulin isotypes. The antigenic specificities of antibodies were checked by Western blot analysis against the SDS-PAGE-separated homologous antigen. Localizations of the MAb specific epitopes in the worm sections were determined by immuno-alkaline phosphate staining.20,21

Preparation of rabbit polyclonal antibodies (PAb) against filarial antigen

A rabbit, weighing about 2 kg, was immunized intramuscularly with 500 µg of adult \textit{B. malayi} extract mixed with an equal volume of complete Freund’s adjuvant. Three booster doses of the same antigen in an incomplete Freund’s adjuvant were given to the rabbit at two week-intervals using the same route and dose. Two weeks after the last booster dose, the animal was bled and the antibody titer against the homologous antigen was determined. IgG were purified from the rabbit antisera by ammonium sulphate precipitation22 and protein A-Sepharose column chromatography (Pharmacia, Uppsala, Sweden).23 The polyclonal anti-filarial IgG (PAb) were subsequently used as capture antibody in the sandwich ELISA for antigen detection.

The indirect ELISA

An indirect ELISA was used for checking antibody titers in the mouse/rabbit immune sera, for screening for antibodies in spent media of growing hybrid cells, for cross-reactivity checking of antibodies secreted by hybridomas and for the quantitative determination of monoclonal antibodies. It was performed as previously described24 using microplates coated individually with 100 µl of antigen diluted in a carbonate-bicarbonate buffer, pH 9.6 (5 µg dry weight per ml). A result was declared positive when the read-out OD was ≥ 0.05. One indirect ELISA unit (EU) was the smallest amount of the antibody preparation that still gave a positive indirect ELISA result.

The sandwich ELISA

The wells of polyvinyl microtiter plates (Maxi-sorb, Nunc, USA) were coated overnight at 4°C with 100 µl of rabbit polyclonal IgG to filarial antigen (PAb as capture reagent; 20 µg per ml in carbonate/bicarbonate buffer, pH 9.6). The wells were washed with PBS-T and uncoated sites were blocked with 200 µl per well of PBS-T/1%, BSA/0.2% gelatin at 37°C for 1 hour. After another washing with PBS-T, the plates were kept at −20°C in a plastic wrap until use. For use, the plates were allowed to warm up at room temperature; 100 µl of the sample to be tested for the presence of filaria antigen was added into the PAb-coated well and incubated at 37°C for 2 hours. The plates were washed and 100 µl of MAb (the detection reagent) containing 256 EU per ml of specific antibodies to filarial antigen was added, incubated at 37°C for 2 hours and washed, after which 100 µl of rabbit anti-mouse immunoglobulin-biotin conjugate (Dakopatts, Glostrup, Denmark, 1:1,000) was added, incubated at 37°C for 1 hour, and washed. Then streptavidin-HRP conjugate (Dakopatts, Glostrup, Denmark, 1:1,000) was added. After incubating for 1 hour at 37°C, the plates were washed and freshly prepared peroxidase substrate was added. The enzyme-substrate reaction was stopped after 30 minutes of reaction by adding 50 µl of 1 N NaOH. The optical density (OD) of the content of each well was read at 492 nm against the blank (PBS or spent medium of myeloma cells) using an ELISA reader (Labsystem, Multiscan Ex, Finland). The OD of the mean (X) plus 3 or 4 standard deviations (SD) of the normal inhabitants of the non-filaria endemic area was used as a cut-off level between positive and negative presence of filarial antigen in the tested samples. The precision of the assay was determined by testing the same serial dilutions of adult \textit{B. malayi} homogenate more than 8 times. The OD values were determined and the coefficient of variation (% CV) was calculated with the formula:

\[
\% \text{ CV} = \frac{\text{SD}}{X \text{ of OD}} \times 100
\]

Reproducibility of the assay according to the criteria of Palmer and Cavallero was met.25
Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis (WB)

SDS-PAGE was carried out in a vertical slab gel apparatus (MiniProtein, Bio-Rad Laboratories, USA) according to the system of Laemmli. A 4% acrylamide stacking gel and 12% acrylamide separating gel were used in the procedure. Western blot analysis (WB) was performed as previously described.

RESULTS

Hybridoma production

Twelve hybridoma clones were established. The MAb secreted by these clones could be classified into four different groups according to their reactivity to the homologous and heterologous antigens tested by the indirect ELISA. Group 1 reacted not only to the homologous antigen, but also to D. immitis antigen; however, it did not react to any other non-filarial heterologous antigen listed in Table 1. Group 2 gave reactions to B. malayi, A. lumbricoides and D. immitis. Group 3 reacted to B. malayi, A. lumbricoides, D. immitis and E. malayanum, while those of group 4 reacted to B. malayi, A. cantonensis, A. lumbricoides, D. immitis, E. malayanum, E. revolutum, G. spinigerum and T. spiralis. A representative hybridoma of group 1, i.e. clone 17E10, was selected for subsequent use in the sandwich ELISA for the detection of filarial antigen. This hybridoma clone 17E10 secreted IgM-kappa isotypes of immunoglobulin. At a stationary phase of cell growth, the spent culture medium always had a titer of 1:256 when tested by indirect ELISA against the homologous antigen, implying cell stability. The Western blot pattern of the MAb 17E10 against the SDS-PAGE-separated B. malayi homogenate is shown in lane B of Fig. 1. The MAb reacted to adult B. malayi antigen in a smear pattern from approximately 37 kDa to > 200 kDa. A similar Western blot pattern was seen when the SDS-PAGE separated-microfilarial homogenate was used (data not shown). The smear Western blot pattern was reproduced using the proteinase-K-treated antigens, implying the non-protein nature of the MAb 17E10 epitope.

Immunalkaline-phosphatase staining revealed that the MAb 17E10 reacted to the internal cuticle and various internal organs of both female and male worms (Fig. 2A, C and E) as well as to the sheath and internal content of microfilariae in utero (Fig. 2G). However, the MAb did not react to the sheath of blood circulating microfilariae (Fig. 2A). Overall anatomical locations in the worm of the specific epitopes targeted by the MAb 17E10 are shown in Fig. 2.

Antigen detection

The sandwich ELISA was performed on serially diluted adult B. malayi homogenates and it was found that the lowest amount of the antigen that the sandwich ELISA
could detect was 7.8 ng. For the untreated plasma samples of the 40 individuals of the NNE1 group, the mean (X) optical density (OD) was 0.026 and the standard deviation (SD) was 0.0065. $X + 4 \text{ SD}$, which was 0.052, was used as cut-off limit between antigen positive and antigen negative status. None of the NNE1 samples was positive, which indicates a high specificity of the assay. The overall results of the antigen detection in the first set of specimens are shown in Table 2.

From the first set of specimens, it seemed that treatment of samples with SDS + Triton X-100 prior to antigen testing yielded the highest sensitivity of antigen detection by this sandwich ELISA. Thus, similar treatment was applied for all human samples of the second set which all consisted of plasma plus buffy coat ($P + B$), and also for the cat and dog samples, prior to subjecting them to the sandwich ELISA.

For the second set of specimens, the X of the OD was 0.028 and the SD was 0.008 for NNE2 samples. The cut-off limit between positive and negative filaria antigenemia was set at $X + 3 \text{ SD}$ which was 0.052. The overall results of the antigen detection of the second set of specimens are shown in Table 3. Among the 7 of 13 cases of L2 which were antigen negative, it was later revealed that three patients had received diethyl carbamazine (DEC) treatment prior to specimen collection.

Normal cat samples, i.e. $P + B$, gave a sandwich ELISA X at 0.024 and a SD at 0.019. The cut-off used for differentiating positive and negative antigenemia in the microfilaraemic cats was set at $X + 3 \text{ SD}$ which was 0.081. It was found that 14 of 15 (93.3%) of the microfilaraemic cats gave a positive antigen test.

The $P + B$ of the five non-microfilaraemic dogs gave ODs of 0.302, 0.049, 0.062, 0.068 and 0.038 in the sandwich ELISA for antigen detection. The cut-off limit was set at $X + 3 \text{ SD}$ (0.068) to differentiate positive and negative antigenemia using the MAh-based sandwich ELISA; it was found that all of the *D. immitis* microfilaraemic samples (100%) were positive.

Fig. 2 Immunoalkaline phosphatase staining of *B. malayi* paraffin sections using MAh 17E10. A, section of adult worm, arrows indicate positive staining of worm cuticle; positive staining of internal organ (arrow heads); C, section of adult female worm; arrow heads indicate positive staining of sheathed microfilariae in utero; E, section of adult male worm; arrow heads indicate positive staining of sex organ; G, section of microfilara, positive staining of microfilaria (arrow heads) and the unstained sheath (arrows); B, D, F and H are the negative control sections (reacted with spent culture medium of P3x63-Ag8.653 myeloma cells).

DISCUSSION

Although antigen detection
Table 2 Results of antigen detection in the first set of specimens

<table>
<thead>
<tr>
<th>Clinical status</th>
<th>Untreated plasma</th>
<th>EDTA treated plasma</th>
<th>SDS + Triton X-100 treated plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. test</td>
<td>No. +ve</td>
<td>(%)</td>
</tr>
<tr>
<td>Microfilaraemia (M1)</td>
<td>17</td>
<td>1</td>
<td>(5.8)</td>
</tr>
<tr>
<td>Lymphangitis (L1)</td>
<td>22</td>
<td>5</td>
<td>(22.7)</td>
</tr>
<tr>
<td>Elephantiasis (E1)</td>
<td>14</td>
<td>2</td>
<td>(14.2)</td>
</tr>
<tr>
<td>Endemic normal (NE1)</td>
<td>40</td>
<td>6</td>
<td>(15)</td>
</tr>
</tbody>
</table>

assays are commercially available for bancroftian filariasis in humans and dirofilariasis in dogs, no such assay is available for the routine diagnosis of brugian filariasis. Most research reports on the detection of circulating B. malayi antigen in human sera showed unsatisfactory sensitivity and specificity or the assay was evaluated using serum pools rather than individual sera.29,31

In this study, attempts have been made to develop a specific serodiagnosis, i.e., a monoclonal antibody based-sandwich ELISA for current brugian filariasis by detecting antigens in individual subjects with different stages of filariasis, as well as in normal counterparts of disease endemic areas. The same assay was also used for detection of filarial antigenemia in infected animals.

In this study, hybridomas secreting monoclonal antibodies to filarial antigens were produced from a mouse immunized with B. malayi antigen. The MAb secreted by the clone 17E10 were selected for further use in a sandwich ELISA for detecting filarial antigen in human and animal blood samples. These MAb reacted only to B. malayi and D. immitis and not to any non-filarial parasites. Unfortunately other filarial worms, e.g., W. bancrofti, Onchocerca, B. timori, Loa loa, were not available for cross-reactivity testing of the MAb.

The MAb 17E10 produced a smear pattern in the Western blot analysis against SDS-PAGE separated-homogenate of adult B. malayi (lane B, Fig. 1). A similar pattern was obtained when the microfilarial extract was used (data not shown) indicating that the MAb specific epitope is not a stage-specific antigen. The epitope is non-protein in nature as indicated by its proteinase-K resistant nature. The smear Western blot pattern of the MAb 17E10 against SDS-PAGE separated-filarial antigen tends to indicate a highly repetitive polymeric structure, with large numbers of identical antigenic determinants. The strength of the signal obtained through the binding of monoclonal antibodies as detection reagent in an antigen detection assay will be much greater with such antigen (containing highly repetitive epitopes) than when there is only a single antigenic determinant per molecule.22

It has been known that a multitude of antigens of parasites including filaria are public antigens, i.e., they are shared not only by different developmental stages but also by members of different species.32 The antigens associated with internal organs performing basic functions essential to the survival of the worms are likely to be shared by many parasite stages and species.33 Results of immunalkaline phosphatase staining confirmed that MAb 17E10 reacted to
a common epitope of adult *B. malayi* and microfilariae and also to *D. immitis* homogenate. Similar findings have been reported previously by Wenger et al.34 and Gonzaga and Santos.35

A major problem in detecting circulating parasite antigens in the host serum or plasma is the host’s antibody response to such antigenic molecules, thereby reducing their availability for antigen detection. Ideally, the best target molecules would be those that are non-immunogenic in humans but immunogenic in other species, e.g., rabbits, mice, such that specific antibodies could be produced in these animals and used as an antigen capture/detection tool for human infection. In filariasis, circulating immune complexes have been demonstrated, both in experimental animal models and in humans34,36-38 and several methods have been used to identify/detect the antigenic moieties in the so-formed circulating immune complexes. Lunde et al.38 used a two-step method to treat the circulating immune complexes in serum samples of patients infected with *W. bancrofti*. The serum sample was mixed with EDTA and 12% polyethylene glycol 6,000 (PEG); after centrifugation, the pellet was washed in a 2.4% PEG solution and the antigen-antibody complexes were dissociated with a glycine-HCl solution, before being used in an ELISA for antigen detection. In other studies, samples of *W. bancrofti* infected-subjects were treated with disodium EDTA, and heated to precipitate the complexes prior to antigen testing. In this study, the buffy coat and the plasma of the studied subjects and animals were used as source of the antigenic target for our polyclonal-monoclonal antibody based-antigen detection assay. The buffy coat was used because independent of whether the antigens were free in the blood or already had formed immune complexes they had to be engulfed by blood phagocytes and processed, either for further presentation to T lymphocytes in order to induce the host immune response or for being broken down to the smallest units, e.g. amino acids, sugars, etc. which might be re-used or discarded. Moreover spinning of the anticoagulated blood should also concentrate the intact microfilariae, if there were any, to the buffy coat area. Plasma was included in order not to miss any of the circulating antigen, which had escaped phagocytosis. For antigen detection, blood collected in three hematocrit tubes was used. SDS and Triton X-100 were added to lyse the leucocyte cytoplasmic membrane, the endosomal/lysosomal membrane as well as the sheath of the microfilariae thus releasing the respective intracellular contents including the target antigens. It was found that the addition of the SDS, Triton X-100 and distilled water not only prevented sample coagulation but also eliminated the background endogenous enzymes that would otherwise interfere with the immunoassay interpretation.

The sandwich ELISA performed on SDS and Triton X-100 treated samples yielded the highest sensitivity when compared with the assay performed on untreated or EDTA-treated samples. The sensitivity of the ELISA for the microfilaric group (M2) was 70.9% while for samples of patients with lymphangitis (L2) and elephantiasis (E2) was 53.8 and 14.2%, respectively. Weil et al.39 also found sam-
Health, Thailand, it was not possible to retest the blood samples of the antigen negative, microfilaria positive cases by the sandwich ELISA. Filarial antigen was detected in patients with lymphangitis and elephantiasis in whom microfilariae could not be detected by microscopic examination and in 10% of normal inhabitants of the filaria endemic areas. These findings agreed with the work of Weil et al. who performed an antigen detection essay of bancroftian filariasis and found the antigen in samples of microfilaraemic patients with clinical manifestations.

The sandwich ELISA, using MAb 17E10 as detection reagent, could also detect antigens of *D. immitis* in animal samples. Ideally the sandwich ELISA developed in this study should be tested on anticoagulated blood samples of patients or animals infected with other filarial parasites in order to see whether the test is positive in those cases as well. Unfortunately, such samples were not available. Thus, it is too early to speculate whether the assay could be used for pan diagnosis of filarial infection. Nevertheless, it offers an alternative to the current standard diagnostic procedures for filariasis, especially brugian filariasis, for which no antigen test is presently available. The target antigen of the sandwich ELISA is heat stable and can be obtained from the subject at any time of the day, which is an advantage over the detection of circulating microfilariae for which only nocturnal blood samples can be used. The test has a high sensitivity and specificity; it is rapid and inexpensive. Several samples can be tested at the same time without much increase in the overall test time. All of these character-

istics make this sandwich ELISA attractive as an alternative routine diagnostic test for clinical use as well as for mass screening of samples in an epidemiological survey of filariasis. Moreover, the test may be used for evaluation of the treatment efficacy as it is reasonable to speculate that a positive antigen result should be reversed after successful chemotherapy.

ACKNOWLEDGEMENTS

The work was supported by the Thailand Research Fund (TRF) through the Senior Researcher grant given to Professor Dr. Wanpen Chaiumpa. The supply of the BALB/c mice from the US Component of the Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, is acknowledged with thanks. The authors thank Dr. Mark Roselieb, Science Development and Management Ltd., Bangkok, for reading the manuscript.

REFERENCES

